921 resultados para semantic segmentation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work introduces a tessellation-based model for the declivity analysis of geographic regions. The analysis of the relief declivity, which is embedded in the rules of the model, categorizes each tessellation cell, with respect to the whole considered region, according to the (positive, negative, null) sign of the declivity of the cell. Such information is represented in the states assumed by the cells of the model. The overall configuration of such cells allows the division of the region into subregions of cells belonging to a same category, that is, presenting the same declivity sign. In order to control the errors coming from the discretization of the region into tessellation cells, or resulting from numerical computations, interval techniques are used. The implementation of the model is naturally parallel since the analysis is performed on the basis of local rules. An immediate application is in geophysics, where an adequate subdivision of geographic areas into segments presenting similar topographic characteristics is often convenient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work aims to define a typology of trawler f1eet in Sète, the main fishing harbour along the French Mediterranean coast, using several multivariate analysis methods. The fishing ships taken to account are represented by annual profiles of landing specific compositions. Five fishing strategies have been identified. A segmentation method using symbolic objects allows a formaI characterisation of the different strategies. These strategies are studied according to several general characteristics usually used for management rules elaboration (power, length, ship age). The typological analysis allows to characterise two main exploitation ways, one directed to the catch of a few species (Engraulis encrasicolus, Sardina pilchardus), the other characterised by the exploitation of a great diversity of species. By this way, it is possible to estimate how the catch of low represented species can significantly contribute to the exploitation of a resource.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of digital image processing techniques is prominent in medical settings for the automatic diagnosis of diseases. Glaucoma is the second leading cause of blindness in the world and it has no cure. Currently, there are treatments to prevent vision loss, but the disease must be detected in the early stages. Thus, the objective of this work is to develop an automatic detection method of Glaucoma in retinal images. The methodology used in the study were: acquisition of image database, Optic Disc segmentation, texture feature extraction in different color models and classification of images in glaucomatous or not. We obtained results of 93% accuracy

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we use concepts from graph theory and cellular biology represented as ontologies, to carry out semantic mining tasks on signaling pathway networks. Specifically, the paper describes the semantic enrichment of signaling pathway networks. A cell signaling network describes the basic cellular activities and their interactions. The main contribution of this paper is in the signaling pathway research area, it proposes a new technique to analyze and understand how changes in these networks may affect the transmission and flow of information, which produce diseases such as cancer and diabetes. Our approach is based on three concepts from graph theory (modularity, clustering and centrality) frequently used on social networks analysis. Our approach consists into two phases: the first uses the graph theory concepts to determine the cellular groups in the network, which we will call them communities; the second uses ontologies for the semantic enrichment of the cellular communities. The measures used from the graph theory allow us to determine the set of cells that are close (for example, in a disease), and the main cells in each community. We analyze our approach in two cases: TGF-β and the Alzheimer Disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The number of connected devices collecting and distributing real-world information through various systems, is expected to soar in the coming years. As the number of such connected devices grows, it becomes increasingly difficult to store and share all these new sources of information. Several context representation schemes try to standardize this information, but none of them have been widely adopted. In previous work we addressed this challenge, however our solution had some drawbacks: poor semantic extraction and scalability. In this paper we discuss ways to efficiently deal with representation schemes' diversity and propose a novel d-dimension organization model. Our evaluation shows that d-dimension model improves scalability and semantic extraction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years the technological world has grown by incorporating billions of small sensing devices, collecting and sharing real-world information. As the number of such devices grows, it becomes increasingly difficult to manage all these new information sources. There is no uniform way to share, process and understand context information. In previous publications we discussed efficient ways to organize context information that is independent of structure and representation. However, our previous solution suffers from semantic sensitivity. In this paper we review semantic methods that can be used to minimize this issue, and propose an unsupervised semantic similarity solution that combines distributional profiles with public web services. Our solution was evaluated against Miller-Charles dataset, achieving a correlation of 0.6.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

National audience

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current study investigated the cognitive workload of sentence and clause wrap-up in younger and older readers. A large number of studies have demonstrated the presence of wrap-up effects, peaks in processing time at clause and sentence boundaries that some argue reflect attention to organizational and integrative semantic processes. However, the exact nature of these wrap-up effects is still not entirely clear, with some arguing that wrap-up is not related to processing difficulty, but rather is triggered by a low-level oculomotor response or the implicit monitoring of intonational contour. The notion that wrap-up effects are resource-demanding was directly tested by examining the degree to which sentence and clause wrap-up affects the parafoveal preview benefit. Older and younger adults read passages in which a target word N occurred in a sentence-internal, clause-final, or sentence-final position. A gaze-contingent boundary change paradigm was used in which, on some trials, a non-word preview of word N+1 was replaced by a target word once the eyes crossed an invisible boundary located between words N and N+1. All measures of reading time on word N were longer at clause and sentence boundaries than in the sentence-internal position. In the earliest measures of reading time, sentence and clause wrap-up showed evidence of reducing the magnitude of the preview benefit similarly for younger and older adults. However, this effect was moderated by age in gaze duration, such that older adults showed a complete reduction in the preview benefit in the sentence-final condition. Additionally, sentence and clause wrap-up were negatively associated with the preview benefit. Collectively, the findings from the current study suggest that wrap-up is cognitively demanding and may be less efficient with age, thus, resulting in a reduction of the parafoveal preview during normal reading.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Humans have a high ability to extract visual data information acquired by sight. Trought a learning process, which starts at birth and continues throughout life, image interpretation becomes almost instinctively. At a glance, one can easily describe a scene with reasonable precision, naming its main components. Usually, this is done by extracting low-level features such as edges, shapes and textures, and associanting them to high level meanings. In this way, a semantic description of the scene is done. An example of this, is the human capacity to recognize and describe other people physical and behavioral characteristics, or biometrics. Soft-biometrics also represents inherent characteristics of human body and behaviour, but do not allow unique person identification. Computer vision area aims to develop methods capable of performing visual interpretation with performance similar to humans. This thesis aims to propose computer vison methods which allows high level information extraction from images in the form of soft biometrics. This problem is approached in two ways, unsupervised and supervised learning methods. The first seeks to group images via an automatic feature extraction learning , using both convolution techniques, evolutionary computing and clustering. In this approach employed images contains faces and people. Second approach employs convolutional neural networks, which have the ability to operate on raw images, learning both feature extraction and classification processes. Here, images are classified according to gender and clothes, divided into upper and lower parts of human body. First approach, when tested with different image datasets obtained an accuracy of approximately 80% for faces and non-faces and 70% for people and non-person. The second tested using images and videos, obtained an accuracy of about 70% for gender, 80% to the upper clothes and 90% to lower clothes. The results of these case studies, show that proposed methods are promising, allowing the realization of automatic high level information image annotation. This opens possibilities for development of applications in diverse areas such as content-based image and video search and automatica video survaillance, reducing human effort in the task of manual annotation and monitoring.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

International audience

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nearest neighbour collaborative filtering (NNCF) algorithms are commonly used in multimedia recommender systems to suggest media items based on the ratings of users with similar preferences. However, the prediction accuracy of NNCF algorithms is affected by the reduced number of items – the subset of items co-rated by both users – typically used to determine the similarity between pairs of users. In this paper, we propose a different approach, which substantially enhances the accuracy of the neighbour selection process – a user-based CF (UbCF) with semantic neighbour discovery (SND). Our neighbour discovery methodology, which assesses pairs of users by taking into account all the items rated at least by one of the users instead of just the set of co-rated items, semantically enriches this enlarged set of items using linked data and, finally, applies the Collinearity and Proximity Similarity metric (CPS), which combines the cosine similarity with Chebyschev distance dissimilarity metric. We tested the proposed SND against the Pearson Correlation neighbour discovery algorithm off-line, using the HetRec data set, and the results show a clear improvement in terms of accuracy and execution time for the predicted recommendations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The contribution of the left inferior prefrontal cortex in semantic processing has been widely investigated in the last decade. Converging evidence from functional imaging studies shows that this region is involved in the “executive” or “controlled” aspects of semantic processing. In this study, we report a single case study of a patient, PW, with damage to the right prefrontal and temporal cortices following stroke. PW showed a problem in executive control of semantic processing, where he could not easily override automatic but irrelevant semantic processing. This case thus shows the necessary role of the right inferior prefrontal cortex in executive semantic processing. Compared to tasks previously used in the literature, our tasks placed higher demands on executive semantic processing. We suggest that the right inferior prefrontal cortex is recruited when the demands on executive semantic processing are particularly high.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Part 19: Knowledge Management in Networks