1000 resultados para seismic scattering
Resumo:
We performed ab initio calculations of many particle inclusive probabilities for the scattering system 16 MeV-S{^16+} on Ar. The solution of the time-dependent DIRAC-FOCK-SLATER-equation is achieved via a set of coupled-channel equations with energy eigenvalues and matrix elements which are given by static SCF molecular many electron calculations.
Resumo:
The potential energy curve of the system Ne-Ne is calculated for small internuclear distances from 0.005 to 3.0 au using a newly developed relativistic molecular Dirac-Fock-Slater code. A significant structure in the potential energy curve is found which leads to a nearly complete agreement with experimental differential elastic scattering cross sections. This demonstrates the presence of quasi-molecular effects in elastic ion-atom collisions at keV energies.
Resumo:
Ab initio fully relativistic SCF molecular calculations of energy eigenvalues as well as coupling-matrix elements are used to calculate the 1s_\sigma excitation differential cross section for Ne-Ne and Ne-O in ion-atom collisions. A relativistic perturbation treatment which allows a direct comparison with analogous non-relativistic calculations is also performed.
Resumo:
To evaluate single and double K-shell inclusive charge transfer probabilities in ion-atom collisions we solve the time-dependent Dirac equation. By expanding the timedependent wavefunction in a set of molecular basis states the time-dependent equation reduces to a set of coupled-channel equations. The energy eigenvalues and matrix elements are taken from self-consistent relativistic molecular many-electron Dirac-Fock-Slater calculations. We present many-electron inclusive probabilities for different final configurations as a function of impact parameter for single and double K-shell vacancy production in collisions of bare S on Ar.
Resumo:
The interatomic potential of the ion-atom scattering system I^N+-I at small intermediate internuclear distances is calculated for different charge states N from atomic Dirac-Focker-Slater (DFS) electron densities within a statistical model. The behaviour of the potential structures, due to ionized electronic shells, is studied by calculations of classical elastic differential scattering cross-sections.
Resumo:
The classical scattering cross section of two colliding nuclei at intermediate and relativistic energies is reevaluated. The influence of retardation and magnetic field effects is taken into account. Corrections due to electron screening as well as due to attractive nuclear forces are discussed. This paper represents an addendum to [l].
Resumo:
The time dependent Dirac equation which describes a heavy ion-atom collision system is solved via a set of coupled channel equations with energy eigenvalues and matrix elements which are given by a selfconsistent field many electron calculation. After a brief discussion of the theoretical approximations and the connection of the many particle with the one particle interpretation we discuss first results for the systems F{^8+} - Ne and F{^6+} - Ne. The resulting P(b) curves for the creation of a Ne K-hole are in good agreement with the experimental results.
Resumo:
The main task of this work has been to investigate the effects of anisotropy onto the propagation of seismic waves along the Upper Mantle below Germany and adjacent areas. Refraction- and reflexion seismic experiments proved the existence of Upper Mantle anisotropy and its influence onto the propagation of Pn-waves. By the 3D tomographic investigations that have been done here for the crust and the upper mantle, considering the influence of anisotropy, a gap for the investigations in Europe has been closed. These investigations have been done with the SSH-Inversionprogram of Prof. Dr. M. Koch, which is able to compute simultaneously the seismic structure and hypocenters. For the investigation, a dataset has been available with recordings between the years 1975 to 2003 with a total of 60249 P- and 54212 S-phase records of 10028 seismic events. At the beginning, a precise analysis of the residuals (RES, the difference between calculated and observed arrivaltime) has been done which confirmed the existence of anisotropy for Pn-phases. The recognized sinusoidal distribution has been compensated by an extension of the SSH-program by an ellipse with a slow and rectangular fast axis with azimuth to correct the Pn-velocities. The azimuth of the fast axis has been fixed by the application of the simultaneous inversion at 25° - 27° with a variation of the velocities at +- 2.5 about an average value at 8 km/s. This new value differs from the old one at 35°, recognized in the initial residual analysis. This depends on the new computed hypocenters together with the structure. The application of the elliptical correction has resulted in a better fit of the vertical layered 1D-Model, compared to the results of preceding seismological experiments and 1D and 2D investigations. The optimal result of the 1D-inversion has been used as initial starting model for the 3D-inversions to compute the three dimensional picture of the seismic structure of the Crust and Upper Mantle. The simultaneous inversion has showed an optimization of the relocalization of the hypocenters and the reconstruction of the seismic structure in comparison to the geology and tectonic, as described by other investigations. The investigations for the seismic structure and the relocalization have been confirmed by several different tests. First, synthetic traveltime data are computed with an anisotropic variation and inverted with and without anisotropic correction. Further, tests with randomly disturbed hypocenters and traveltime data have been proceeded to verify the influence of the initial values onto the relocalization accuracy and onto the seismic structure and to test for a further improvement by the application of the anisotropic correction. Finally, the results of the work have been applied onto the Waldkirch earthquake in 2004 to compare the isotropic and the anisotropic relocalization with the initial optimal one to verify whether there is some improvement.
Resumo:
by Karl Uno Ingard.
Resumo:
The boreal forest of western Canada is being dissected by seismic lines used for oil and gas exploration. The vast amount of edge being created is leading to concerns that core habitat will be reduced for forest interior species for extended periods of time. The Ovenbird (Seiurus aurocapilla) is a boreal songbird known to be sensitive to newly created seismic lines because it does not include newly cut lines within its territory. We examined multiple hypotheses to explain potential mechanisms causing this behavior by mapping Ovenbird territories near lines with varying states of vegetation regeneration. The best model to explain line exclusion behavior included the number of neighboring conspecifics, the amount of bare ground, leaf-litter depth, and canopy closure. Ovenbirds exclude recently cut seismic lines from their territories because of lack of protective cover (lower tree and shrub cover) and because of reduced food resources due to large areas of bare ground. Food reduction and perceived predation risk effects seem to be mitigated once leaf litter (depth and extent of cover) and woody vegetation cover are restored to forest interior levels. However, as conspecific density increases, lines are more likely to be used as landmarks to demarcate territorial boundaries, even when woody vegetation cover and leaf litter are restored. This behavior can reduce territory density near seismic lines by changing the spatial distribution of territories. Landmark effects are longer lasting than the effects from reduced food or perceived predation risk because canopy height and tree density take >40 years to recover to forest interior levels. Mitigation of seismic line impacts on Ovenbirds should focus on restoring forest cover as quickly as possible after line cutting.
Resumo:
We consider the problem of scattering of a time-harmonic acoustic incident plane wave by a sound soft convex polygon. For standard boundary or finite element methods, with a piecewise polynomial approximation space, the computational cost required to achieve a prescribed level of accuracy grows linearly with respect to the frequency of the incident wave. Recently Chandler–Wilde and Langdon proposed a novel Galerkin boundary element method for this problem for which, by incorporating the products of plane wave basis functions with piecewise polynomials supported on a graded mesh into the approximation space, they were able to demonstrate that the number of degrees of freedom required to achieve a prescribed level of accuracy grows only logarithmically with respect to the frequency. Here we propose a related collocation method, using the same approximation space, for which we demonstrate via numerical experiments a convergence rate identical to that achieved with the Galerkin scheme, but with a substantially reduced computational cost.
Resumo:
We consider the approximation of some highly oscillatory weakly singular surface integrals, arising from boundary integral methods with smooth global basis functions for solving problems of high frequency acoustic scattering by three-dimensional convex obstacles, described globally in spherical coordinates. As the frequency of the incident wave increases, the performance of standard quadrature schemes deteriorates. Naive application of asymptotic schemes also fails due to the weak singularity. We propose here a new scheme based on a combination of an asymptotic approach and exact treatment of singularities in an appropriate coordinate system. For the case of a spherical scatterer we demonstrate via error analysis and numerical results that, provided the observation point is sufficiently far from the shadow boundary, a high level of accuracy can be achieved with a minimal computational cost.
Resumo:
In this paper we consider the problem of time-harmonic acoustic scattering in two dimensions by convex polygons. Standard boundary or finite element methods for acoustic scattering problems have a computational cost that grows at least linearly as a function of the frequency of the incident wave. Here we present a novel Galerkin boundary element method, which uses an approximation space consisting of the products of plane waves with piecewise polynomials supported on a graded mesh, with smaller elements closer to the corners of the polygon. We prove that the best approximation from the approximation space requires a number of degrees of freedom to achieve a prescribed level of accuracy that grows only logarithmically as a function of the frequency. Numerical results demonstrate the same logarithmic dependence on the frequency for the Galerkin method solution. Our boundary element method is a discretization of a well-known second kind combined-layer-potential integral equation. We provide a proof that this equation and its adjoint are well-posed and equivalent to the boundary value problem in a Sobolev space setting for general Lipschitz domains.