981 resultados para seabed sediment


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relative effects of paleoceanographic and paleogeographic variations, sediment lithology, and diagenetic processes on the final preserved chemistry of Japan Sea sediments are evaluated by investigating the rare earth element (REE), major element, and trace element concentrations in 59 squeeze-cake whole-round and 27 physical-property sample residues from Sites 794, 795, and 797, cored during ODP Leg 127. The most important variation in sedimentary chemical composition is the increase in SiO2 concentration through the Pliocene diatomaceous sequences, which dilutes most other major and trace element components by various degrees. This biogenic input is largest at Site 794 (Yamato Basin), moderately developed at Site 797 (Yamato Basin), and of only minor importance at Site 795 (Japan Basin), potentially reflecting basinal contrasts in productivity with the Yamato Basin recording greater biogenic input than the Japan Basin and with the easternmost sequence of Site 794 lying beneath the most productive waters. There are few systematic changes in solid-phase chemistry resulting from the opal-A/opal-CT or opal-CT/quartz silica phase transformations. Most major and trace element concentrations are controlled by the aluminosilicate fraction of the sediment, although the effects of diagenetic silica phases and manganese carbonates are of localized importance. REE total abundances (Sum REE) in the Japan Sea are strongly dependent upon the paleoceanographic position of a given site with respect to terrigenous and biogenic sources. REE concentrations at Site 794 overall correspond well to aluminosilicate chemical indices and are strongly diluted by SiO2 within the upper Miocene-Pliocene diatomaceous sequence. Eu/Eu* values at Site 794 reach a maximum through the diatomaceous interval as well, most likely suggesting an association of Eu/Eu* with the siliceous component, or reflecting slight incorporation of a detrital feldspar phase. SumREE at Site 795 also is affiliated strongly with aluminosilicate phases and yet is diluted only slightly by siliceous input. At Site 797, SumREE is not as clearly associated with the aluminosilicate fraction, is correlated moderately to siliceous input, and may be sporadically influenced by detrital heavy minerals originating from the nearby rifted continental fragment composing the Yamato Rise. Ce/Ce* profiles at all three sites increase essentially monotonically with depth and record progressive diagenetic LREE fractionation. The observed Ce/Ce* increases are not responding to changes in the paleoceanographic oxygenation state of the overlying water, as there is no independent evidence to suggest the proper oceanographic conditions. Ce/Ce* correlates slightly better with depth than with age at the two Yamato Basin sites. The downhole increase in Ce/Ce* at Sites 794 and 797 is a passive response to the diagenetic transfer of LREE (except Ce) from sediment to interstitial water. At Site 795, the overall lack of correlation between Ce/Ce* and Lan/Ybn suggests that other processes mask the diagenetic behavior of all LREEs. First-order calculations of the Ce budget in Japan Sea waters and sediment indicate that ~20% of the excess Ce adsorbed by settling particles is recycled within the water column and that an additional ~38% is recycled at or near the seafloor. Thus, because the remaining excess Ce is only ~10% of the total Ce, there is not a large source of Ce to the deeply buried sediment, further suggesting that the downhole increase in Ce/Ce* is a passive response to diagenetic behavior of the other LREEs. The REE chemistry of Japan Sea sediment therefore predicts successive downhole addition of LREEs to deeply buried interstitial waters.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sediments of Lake Donggi Cona on the northeastern Tibetan Plateau were studied to infer changes in the lacustrine depositional environment, related to climatic and non-climatic changes during the last 19 kyr. The lake today fills a 30 X 8 km big and 95 m deep tectonic basin, associated with the Kunlun Fault. The study was conducted on a sediment-core transect through the lake basin, in order to gain a complete picture of spatiotemporal environmental change. The recovered sediments are partly finely laminated and are composed of calcareous muds with variable amounts of carbonate micrite, organic matter, detrital silt and clay. On the basis of sedimentological, geochemical, and mineralogical data up to five lithological units (LU) can be distinguished that document distinct stages in the development of the lake system. The onset of the lowermost LU with lacustrine muds above basal sands indicates that lake level was at least 39 m below the present level and started to rise after 19 ka, possibly in response to regional deglaciation. At this time, the lacustrine environment was characterized by detrital sediment influx and the deposition of siliciclastic sediment. In two sediment cores, upward grain-size coarsening documents a lake-level fall after 13 cal ka BP, possibly associated with the late-glacial Younger Dryas stadial. From 11.5 to 4.3 cal ka BP, grainsize fining in sediment cores from the profundal coring sites and the onset of lacustrine deposition at a litoral core site (2m water depth) in a recent marginal bay of Donggi Cona document lake-level rise during the early tomid-Holocene to at least modern level. In addition, high biological productivity and pronounced precipitation of carbonate micrites are consistent with warm and moist climate conditions related to an enhanced influence of summer monsoon. At 4.3 cal ka BP the lake system shifted from an aragonite- to a calcite-dominated system, indicating a change towards a fully open hydrological lake system. The younger clay-rich sediments are moreover non-laminated and lack any diagenetic sulphides, pointing to fully ventilated conditions, and the prevailing absence of lake stratification. This turning point in lake history could imply either a threshold response to insolation-forced climate cooling or a response to a non-climatic trigger, such as an erosional event or a tectonic pulse that induced a strong earthquake, which is difficult to decide from our data base.