950 resultados para scenario immunization
Resumo:
Efficacy of commercial wireless networks can be substantially enhanced through large-scale cooperation among involved entities such as providers and customers. The success of such cooperation is contingent upon the design of judicious resource allocation strategies that ensure that the individuals' payoffs are commensurate to the resources they offer to the coalition. The resource allocation strategies depend on which entities are decision-makers and whether and how they share their aggregate payoffs. Initially, we consider the scenario where the providers are the only decision-makers and they do not share their payoffs. We formulate the resource allocation problem as a nontransferable payoff coalitional game and show that there exists a cooperation strategy that leaves no incentive for any subset of providers to split from the grand coalition, i.e., the core of the game is nonempty. To compute this cooperation strategy and the corresponding payoffs, we subsequently relate this game and its core to an exchange market setting and its equilibrium, which can be computed by several efficient algorithms. Next, we investigate cooperation when customers are also decision-makers and decide which provider to subscribe to based on whether there is cooperation. We formulate a coalitional game in this setting and show that it has a nonempty core. Finally, we extend the formulations and results to the cases where the payoffs are vectors and can be shared selectively.
Resumo:
Numerical modeling of saturated subsurface flow and transport has been widely used in the past using different numerical schemes such as finite difference and finite element methods. Such modeling often involves discretization of the problem in spatial and temporal scales. The choice of the spatial and temporal scales for a modeling scenario is often not straightforward. For example, a basin-scale saturated flow and transport analysis demands larger spatial and temporal scales than a meso-scale study, which in turn has larger scales compared to a pore-scale study. The choice of spatial-scale is often dictated by the computational capabilities of the modeler as well as the availability of fine-scale data. In this study, we analyze the impact of different spatial scales and scaling procedures on saturated subsurface flow and transport simulations.
Resumo:
A multiple UAV search and attack mission in a battlefield involves allocating UAVs to different target tasks efficiently. This task allocation becomes difficult when there is no communication among the UAVs and the UAVs sensors have limited range to detect the targets and neighbouring UAVs, and assess target status. In this paper, we propose a team theoretic approach to efficiently allocate UAVs to the targets with the constraint that UAVs do not communicate among themselves and have limited sensor range. We study the performance of team theoretic approach for task allocation on a battle field scenario. The performance obtained through team theory is compared with two other methods, namely, limited sensor range but with communication among all the UAVs, and greedy strategy with limited sensor range and no communication. It is found that the team theoretic strategy performs the best even though it assumes limited sensor range and no communication.
Resumo:
The magnitude and volume of transportation of petroleum products (both crude and finished products) has necessitated constructing dedicated pipelines from the refineries to the various consumer centers. The present status and scenario of pipeline transportation has been briefly described. Published literatures covering geotechnical engineering aspects, especially corrosion studies for pipelines are scanty. Available literature has been summarized. Main topic includes soil resistivity survey, classification based on resistivity and various parameters of chemical analysis. Detailed analysis has been carried out from the data generated through field investigation and laboratory tests on soil samples obtained from different locations along the two selected pipeline route where they are to be constructed. Typical data has been analysed for aggressivity. Summary of aggressivity analysis has been presented for the two field cases and modification has been suggested for existing practice.
Resumo:
We report the formation omega phase in the remelted layers during laser cladding and remelting of quasicrystal forming Al65Cu23.3Fe11.7 alloy on pure aluminum. The omega phase is absent in the clad layers. In the remelted layer, the phase nucleates at the periphery of the primary icosahedral phase particles. A large number of omega phase particles forms enveloping the icosahedral phase growing into aluminum rich melt, which solidify as alpha-Al solid solution. On the other side it develops an interface with aluminum. A detailed transmission electron microscopic analysis shows that omega phase exhibits orientation relationship with icosahedral phase. The composition analysis performed using energy dispersive x-ray analyzer suggests that this phase has composition higher aluminum than the icosahedral phase. The analysis of the available phase diagram information indicates that the present results represent large departure from equilibrium conditions. A possible scenario of the evolution of the omega phase has been suggested.
Resumo:
This paper deals with the solution to the problem of multisensor data fusion for a single target scenario as detected by an airborne track-while-scan radar. The details of a neural network implementation, various training algorithms based on standard backpropagation, and the results of training and testing the neural network are presented. The promising capabilities of RPROP algorithm for multisensor data fusion for various parameters are shown in comparison to other adaptive techniques
Resumo:
In this paper, a new proportional-navigation guidance law, called retro-proportional-navigation, is proposed. The guidance law is designed to intercept targets that are of higher speeds than the interceptor. This is a typical scenario in a ballistic target interception. The capture region analysis for both proportional-navigation and retro-proportional-navigation guidance laws are presented. The study shows that, at the cost of a higher intercept time, the retro-proportional-navigation guidance law demands lower terminal lateral acceleration than proportional navigation and can intercept high-velocity targets from many initial conditions that the classical proportional navigation cannot. Also, the capture region with the retro-proportional-navigation guidance law is shown to be larger compared with the classical proportional-navigation guidance law.
Resumo:
We investigate e(+)e(-) -> gamma gamma process within the Seiberg-Witten expanded noncommutative standard model (NCSM) scenario in the presence of anomalous triple gauge boson couplings. This study is done with and without initial beam polarization and we restrict ourselves to leading order effects of noncommutativity i.e. O(Theta). The noncommutative (NC) corrections are sensitive to the electric component ((Theta) over bar (E)) of NC parameter. We include the effects of Earth's rotation in our analysis. This study is done by investigating the effects of noncommutativity on different time averaged cross section observables. We have also defined forward backward asymmetries which will be exclusively sensitive to anomalous couplings. We have looked into the sensitivity of these couplings at future experiments at the International Linear Collider (ILC). This analysis is done under realistic ILC conditions with the center of mass energy (cm.) root s = 800 GeV and integrated luminosity L = 500 fb(-1). The scale of noncommutativity is assumed to be Lambda = 1 TeV. The limits on anomalous couplings of the order 10(-1) from forward backward asymmetries while much stringent limits of the order 10(-2) from total cross section are obtained if no signal beyond SM is seen. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Grouping and coordination tactics for ground attack missions by a heterogeneous mix of reconnaissance, enemy suppression, and attack unmanned aerial vehicles (UAVs) is presented. Dubins' paths are used to determine the optimal number of attack UAVs and their positional and heading freedoms, as functions of weapon seeker range and field of view. A generic battlefield scenario with layered defense is created and the tactics are evaluated on a Group Flyer simulation platform for both nominal and off-nominal conditions.
Resumo:
In the context of the standard model with a fourth generation, we explore the allowed mass spectra in the fourth-generation quark and lepton sectors as functions of the Higgs mass. Using the constraints from unitarity and oblique parameters, we show that a heavy Higgs allows large mass splittings in these sectors, opening up new decay channels involving W emission. Assuming that the hints for a light Higgs do not yet constitute an evidence, we work in a scenario where a heavy Higgs is viable. A Higgs heavier than similar to 800 GeV would in fact necessitate either a heavy quark decay channel t' -> b'W/b' -> t'W or a heavy lepton decay channel tau' -> nu'W as long as the mixing between the third and fourth generations is small. This mixing tends to suppress the mass splittings and hence the W-emission channels. The possibility of the W-emission channel could substantially change the search strategies of fourth-generation fermions at the LHC and impact the currently reported mass limits.
Resumo:
A brief discussion and review of the geothermal reservoir systems, geothermal energy and modeling and simulation of the geothermal reservoirs has been presented here. Different types of geothermal reservoirs and their governing equations have been discussed first. The conceptual and numerical modeling along with the representation of flow though fractured media, some issues related to non isothermal flow through fractured media, the efficiency of the geothermal reservoir, structure of the numerical models, boundary conditions and calibration procedures have been illustrated. A brief picture of the Indian scenario and some barriers related with geothermal power are discussed and presented thereafter. Finally some gaps of the existing knowledge and recent focuses of research are discussed.
Resumo:
The term design in this paper particularly refers to the process (verb) and less-to the outcome or product. Design comprises a complex set of activities today involving both man and machine. Sustainability is a fundamental paradigm and carries significance in any process, natural or manmade, and its outcome. In simple terms, sustainability implies a state of sustainable living, viz, health and continuity, nurtured by diversity and evolution (innovations) in an ever-changing world. Design, in a similar line, has been comprehensively investigated and its current manifestations including design-aids (Computer Aided Design) have been evaluated in terms of sustainability. The paper investigates the rationale of sustainability to design as a whole - its purpose, its adoption in the natural world, its relevance to humankind and the technologies involved. Throughout its history, technology has been used to aid design. But in the current context of advanced algorithms and computational capacity, design no longer remains an exclusively animate faculty. Given this scenario, investigating sustainability in the light of advanced design aids such as CAD becomes pertinent. Considering that technology plays a part in design activities, the paper explores where technology must play a part and to what degree amongst the various activities that comprise design. The study includes an examination of the morphology of design and the development of a systems-thinking integrated forecasting model to evaluate the implications of CAD tools in design and sustainability. The results of the study along with a broad range of recommendations have been presented. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
This paper shows how multidisciplinary research can help policy makers develop policies for sustainable agricultural water management interventions by supporting a dialogue between government departments that are in charge of different aspects of agricultural development. In the Jaldhaka Basin in West Bengal, India, a stakeholder dialogue helped identify potential water resource impacts and livelihood implications of an agricultural water management rural electrification scenario. Hydrologic modelling demonstrated that the expansion of irrigation is possible with only a localized effect on groundwater levels, but cascading effects such as declining soil fertility and negative impacts from agrochemicals will need to be addressed.
Resumo:
We consider a dense, ad hoc wireless network, confined to a small region. The wireless network is operated as a single cell, i.e., only one successful transmission is supported at a time. Data packets are sent between source-destination pairs by multihop relaying. We assume that nodes self-organize into a multihop network such that all hops are of length d meters, where d is a design parameter. There is a contention-based multiaccess scheme, and it is assumed that every node always has data to send, either originated from it or a transit packet (saturation assumption). In this scenario, we seek to maximize a measure of the transport capacity of the network (measured in bit-meters per second) over power controls (in a fading environment) and over the hop distance d, subject to an average power constraint. We first motivate that for a dense collection of nodes confined to a small region, single cell operation is efficient for single user decoding transceivers. Then, operating the dense ad hoc wireless network (described above) as a single cell, we study the hop length and power control that maximizes the transport capacity for a given network power constraint. More specifically, for a fading channel and for a fixed transmission time strategy (akin to the IEEE 802.11 TXOP), we find that there exists an intrinsic aggregate bit rate (Theta(opt) bits per second, depending on the contention mechanism and the channel fading characteristics) carried by the network, when operating at the optimal hop length and power control. The optimal transport capacity is of the form d(opt)((P) over bar (t)) x Theta(opt) with d(opt) scaling as (P) over bar (t) (1/eta), where (P) over bar (t) is the available time average transmit power and eta is the path loss exponent. Under certain conditions on the fading distribution, we then provide a simple characterization of the optimal operating point. Simulation results are provided comparing the performance of the optimal strategy derived here with some simple strategies for operating the network.
Resumo:
Nonextremal solution with warped resolved-deformed conifold background is important to study the infrared limit of large N thermal QCD. Earlier works in this direction have not taken into account all the backreactions on the geometry, namely from the branes, fluxes, and black-hole carefully. In the present work we make some progress in this direction by solving explicitly the supergravity equations of motions in the presence of the backreaction from the black hole. The backreactions from the branes and the fluxes on the other hand and to the order that we study, are comparatively suppressed. Our analysis reveal, among other things, how the resolution parameter would depend on the horizon radius and how the renormalization group flows of the coupling constants should be understood in these scenarios, including their effects on the background three-form fluxes. We also study the effect of switching on a chemical potential in the background and, in a particularly simplified scenario, compute the actual value of the chemical potential for our case.