968 resultados para scaling insensitive
Resumo:
Apresentamos uma revisão sobre trauma renal, com ênfase na avaliação radiológica, particularmente com o uso da tomografia computadorizada, que tem se tornado o exame de eleição, ao invés da urografia excretora e arteriografia. O sucesso no tratamento conservador dos pacientes com trauma renal depende de um acurado estadiamento da extensão da lesão, classificado de acordo com a Organ Injury Scaling do Colégio Americano de Cirurgiões. O tratamento conservador não-operatório é seguro e consiste de observação contínua, repouso no leito, hidratação endovenosa adequada e antibioti- coterapia profilática, evitando-se uma exploração cirúrgica desnecessária e possível perda renal. As indicações para exploração cirúrgica imediata são abdome agudo, rápida queda do hematócrito ou lesões associadas determinadas na avaliação radiológica. Quando indicada, a exploração renal após controle vascular prévio é segura, permitindo cuidadosa inspeção do rim e sua reconstrução com sucesso, reduzindo a probabilidade de nefrectomia.
Resumo:
Nas últimas décadas, diversas alternativas têm sido propostas para o tratamento do trauma esplênico. O presente estudo procurou comparar o tratamento não-operatório e a cirurgia conservadora na lesão esplênica. Foram analisados, retrospectivamente, os prontuários de 136 portadores de trauma esplênico atendidos na Unidade de Emergência do Hospital das Clínicas da FMRPUSP (1986-1995). Foram utilizados o lnjury Severity Score (1SS) e o Organ lnjury Scaling (OIS) para a definição da gravidade dos casos. Os pacientes foram divididos em dois grupos: grupo A (n=32): conservador não operatório e grupo B (n=104): cirurgia conservadora. As médias de idade, em anos, foram semelhantes (A: 20,31 + 12,43 e B: 25,02 + 14,98; p>0,05). Houve predominância do sexo masculino em ambos os grupos. Os dois grupos diferiram quanto à etiologia (p<0,01). A avaliação das médias do ISS não mostrou diferença significativa (A: 14,21 ± 8,67 e B: 19,44 ± 11,33; p>0,05). Ocorreram complicações em 9,37% e 24,03% dos grupos A e B, respectivamente, mas a diferença não foi significativa (p>0,05). A média de permanência hospitalar foi de 6,68 ± 5,65 e 9,24 ± 9,09 dias, grupos A e B, sem diferença significativa (p>0,05). Concluímos, portanto: o tratamento não-operatório e a cirurgia conservadora do trauma esplênico são condutas equivalentes, sendo opções terapêuticas válidas nas lesões esplênicas de menor gravidade.
Resumo:
In accordance with the Moore's law, the increasing number of on-chip integrated transistors has enabled modern computing platforms with not only higher processing power but also more affordable prices. As a result, these platforms, including portable devices, work stations and data centres, are becoming an inevitable part of the human society. However, with the demand for portability and raising cost of power, energy efficiency has emerged to be a major concern for modern computing platforms. As the complexity of on-chip systems increases, Network-on-Chip (NoC) has been proved as an efficient communication architecture which can further improve system performances and scalability while reducing the design cost. Therefore, in this thesis, we study and propose energy optimization approaches based on NoC architecture, with special focuses on the following aspects. As the architectural trend of future computing platforms, 3D systems have many bene ts including higher integration density, smaller footprint, heterogeneous integration, etc. Moreover, 3D technology can signi cantly improve the network communication and effectively avoid long wirings, and therefore, provide higher system performance and energy efficiency. With the dynamic nature of on-chip communication in large scale NoC based systems, run-time system optimization is of crucial importance in order to achieve higher system reliability and essentially energy efficiency. In this thesis, we propose an agent based system design approach where agents are on-chip components which monitor and control system parameters such as supply voltage, operating frequency, etc. With this approach, we have analysed the implementation alternatives for dynamic voltage and frequency scaling and power gating techniques at different granularity, which reduce both dynamic and leakage energy consumption. Topologies, being one of the key factors for NoCs, are also explored for energy saving purpose. A Honeycomb NoC architecture is proposed in this thesis with turn-model based deadlock-free routing algorithms. Our analysis and simulation based evaluation show that Honeycomb NoCs outperform their Mesh based counterparts in terms of network cost, system performance as well as energy efficiency.
Resumo:
Kirjallisuusarvostelu
Resumo:
Advanced oxidation processes (AOPs) have been studied and developed to suffice the effective removal of refractory and toxic compounds in polluted water. The quality and cost of wastewater treatment need improvements, and electric discharge technology has a potential to make a significant difference compared to other established AOPs based on energy efficiency. The generation of active oxidant species such as ozone and hydroxyl radicals by high voltage discharge is a relatively new technology for water treatment. Gas-phase pulsed corona discharge (PCD), where a treated aqueous solution is dispersed between corona-producing electrodes free of the dielectric barriers, was developed as an alternative approach to the problem. The short living radicals and ozone formed in the gas phase and at the gas-liquid interface react with dissolved impurities. PCD equipment has a relatively simple configuration, and with the reactor in an enclosed compartment, it is insensitive towards gas humidity and does not need the gas transport. In this thesis, PCD was used to study and evaluate the energy efficiency for degrading various organic compounds, as well as the chemistry of the oxidation products formed. The experiments investigate the aqueous oxidation of phenol, humic substances, pharmaceutical compounds (paracetamol, ibuprofen, indomethacin, salicylic acids, -estradiol), as well as lignin degradation and transformation to aldehydes. The study aims to establish the influence of initial concentration of the target pollutant, the pulsed discharge parameters, gas phase composition and the pH on the oxidation kinetics and the efficiency. Analytical methods to measure the concentrations of the target compounds and their by-products include HPLC, spectrophotometry, TOC and capillary electrophoresis. The results of the research included in this summary are presented in the attached publications and manuscripts accepted for publication. Pulsed corona discharge proved to be highly effective in oxidizing each of the target compounds, surpassing the closest competitor, conventional ozonation. The increase in oxidation efficiencies for some compounds in oxygen media and at lower pulse repetition frequencies shows a significant role of ozone. The role of the ·OH radicals was established in the surface reactions. The main oxidation products, formation of nitrates, and the lignin transformation were quantified. A compound specific approach is suggested for optimization of the PCD parameters that have the most significant impact on the oxidation energy efficiency because of the different characteristics and responses of the target compound to the oxidants, as well as different admixtures that are present in the wastewater. Further studies in the method’s safety (nitration and nitrosation of organic compounds, nitrite and nitrate formation enhancement) are needed for promoting the method.
Resumo:
Understanding how weed seed germination and emergence respond to environmental factors is critical to determining their adaptive capabilities and potential for infestations, and could also aid in the development of effective control practices. Germination of Ipomoea asarifolia (Desr.) Roem. & Schultz and Stachytarpheta cayennensis (Rich) Vahl. decreased linearly with decreasing osmotic potentials. Also, increasing osmotic stress delayed germination of Ipomoea more than that of Stachytarpheta. Ipomoea germination was insensitive to light, while Stachytarpheta showed a positive photoblastic behavior. Nitrate had a negative effect on germination of Ipomoea seed under both light and dark conditions but stimulated dark germination of Stachytarpheta. Ipomoea emergence was not significantly affected by planting depth. However, for Stachytarpheta emergence was restrited to seeds planted at the soil surface. Emergence of Ipomoea seedlings from greater than 6cm significantly decreased the amount of biomass allocated to roots, while biomass allocated to leaves was decreased for seedlings that emerged from depths greater than 2cm. These germination and emergence responses are discussed in relation to their ecological implications and to weed control strategies.
Resumo:
In this work, superconducting YBa2 Cu3O6+x (YBCO) thin films have been studied with the experimental focus on the anisotropy of BaZrO3 (BZO) doped YBCOthin films and the theoretical focus on modelling flux pinning by numerically solving Ginzburg- Landau equations. Also, the structural properties of undoped YBCO thin films grown on NdGaO3 (NGO) and MgO substrates were investigated. The thin film samples were made by pulsed laser ablation on single crystal substrates. The structural properties of the thin films were characterized by X-ray diffraction and atomic force microscope measurements. The superconducting properties were investigated with a magnetometer and also with transport measurements in pulsed magnetic field up to 30 T. Flux pinning was modelled by restricting the value of the order parameter inside the columnar pinning sites and then solving the Ginzburg-Landau equations numerically with the restrictions in place. The computations were done with a parallel code on a supercomputer. The YBCO thin films were seen to develop microcracks when grown on NGO or MgO substrates. The microcrack formation was connected to the structure of the YBCO thin films in both cases. Additionally, the microcracks can be avoided by careful optimization of the deposition parameters and the film thickness. The BZO doping of the YBCO thin films was seen to decrease the effective electron mass anisotropy, which was seen by fitting the Blatter scaling to the angle dependence of the upper critical field. The Ginzburg-Landau simulations were able to reproduce the measured magnetic field dependence of the critical current density for BZO doped and undoped YBCO. The simulations showed that in addition to the large density also the large size of the BZO nanorods is a key factor behind the change in the power law behaviour between BZO doped and undoped YBCO. Additionally, the Ginzburg-Landau equations were solved for type I thin films where giant vortices were seen to appear depending on the film thickness. The simulations predicted that singly quantized vortices are stable in type I films up to quite large thicknesses and that the size of the vortices increases with decreasing film thickness, in a way that is similar to the behaviour of the interaction length of Pearl vortices.
Resumo:
The current knowledge of light quality effects on plant morphogenesis and development represents a new era of understanding on how plant communities perceive and adjust to available resources. The most important consequences of light quality cues, often mediated by decreasing in red far-red ratios with respect to the spectral composition of incident sunlight radiation, affecting weed-crop interaction are the increased plant height and shoot to root ratio in anticipation of competition by light quantity, water or nutrients. Although the concepts related to light quality have been extensively studied and several basic process of this phenomenon are well known, little applications of photomorphogenic signaling currently are related to agricultural problems or weed management. The objectives of this review are to describe how light quality change can be a triggering factor of interspecific interference responses, to analyze how this phenomenon can be used to predict weed interference, to reevaluate the critical periods of interference concept, and to discuss its potential contribution towards developing more weed competitive crop varieties. Knowledge on light quality responses involved in plant sensing of interspecific competition could be used to identify red/far-red threshold values, indicating when weed control should be started. Light quality alterations by weeds can affect grain crop development mainly in high yielding fields. Unlike the traditional concept or the critical period of competition, light quality mediated interference implies that the critical period for weed control could start before the effects of direct resource (water, nutrients and available light) limitation actually occur. The variability in light quality responses among crop genotypes and the identification of mutants insensitive to light quality effects indicate that this characteristic can be selected or modified to develop cultivars with enhanced interspecific interference ability. Knowledge on light quality-elicited responses represents a new possibility to understand the underlying biology of interspecific interference, and could be used in the development of new weed management technologies.
Resumo:
The interferometer for low resolution portable Fourier Transform middle infrared spectrometer was developed and studied experimentally. The final aim was a concept for a commercial prototype. Because of the portability, the interferometer should be compact sized and insensitive to the external temperature variations and mechanical vibrations. To minimise the size and manufacturing costs, Michelson interferometer based on plane mirrors and porch swing bearing was selected and no dynamic alignment system was applied. The driving motor was a linear voice coil actuator to avoid mechanical contact of the moving parts. The driving capability for low mirror driving velocities required by the photoacoustic detectors was studied. In total, four versions of such an interferometer were built and experimentally studied. The thermal stability during the external temperature variations and the alignment stability over the mirror travel were measured using the modulation depth of the wide diameter laser beam. Method for estimating the mirror tilt angle from the modulation depth was developed to take account the effect from the non-uniform intensity distribution of the laser beam. The spectrometer stability was finally studied also using the infrared radiation. The latest interferometer was assembled for the middle infrared spectrometer with spectral range from 750 cm−1 to 4500 cm−1. The interferometer size was (197 × 95 × 79) mm3 with the beam diameter of 25 mm. The alignment stability as the change of the tilt angle over the mirror travel of 3 mm was 5 μrad, which decreases the modulation depth only about 0.7 percent in infrared at 3000 cm−1. During the temperature raise, the modulation depth at 3000 cm−1 changed about 1 . . . 2 percentage units per Celsius over short term and even less than 0.2 percentage units per Celsius over the total temperature raise of 30 °C. The unapodised spectral resolution was 4 cm−1 limited by the aperture size. The best achieved signal to noise ratio was about 38 000:1 with commercially available DLaTGS detector. Although the vibration sensitivity requires still improving, the interferometer performed, as a whole, very well and could be further developed to conform all the requirements of the portable and stable spectrometer.
Resumo:
Advancements in IC processing technology has led to the innovation and growth happening in the consumer electronics sector and the evolution of the IT infrastructure supporting this exponential growth. One of the most difficult obstacles to this growth is the removal of large amount of heatgenerated by the processing and communicating nodes on the system. The scaling down of technology and the increase in power density is posing a direct and consequential effect on the rise in temperature. This has resulted in the increase in cooling budgets, and affects both the life-time reliability and performance of the system. Hence, reducing on-chip temperatures has become a major design concern for modern microprocessors. This dissertation addresses the thermal challenges at different levels for both 2D planer and 3D stacked systems. It proposes a self-timed thermal monitoring strategy based on the liberal use of on-chip thermal sensors. This makes use of noise variation tolerant and leakage current based thermal sensing for monitoring purposes. In order to study thermal management issues from early design stages, accurate thermal modeling and analysis at design time is essential. In this regard, spatial temperature profile of the global Cu nanowire for on-chip interconnects has been analyzed. It presents a 3D thermal model of a multicore system in order to investigate the effects of hotspots and the placement of silicon die layers, on the thermal performance of a modern ip-chip package. For a 3D stacked system, the primary design goal is to maximise the performance within the given power and thermal envelopes. Hence, a thermally efficient routing strategy for 3D NoC-Bus hybrid architectures has been proposed to mitigate on-chip temperatures by herding most of the switching activity to the die which is closer to heat sink. Finally, an exploration of various thermal-aware placement approaches for both the 2D and 3D stacked systems has been presented. Various thermal models have been developed and thermal control metrics have been extracted. An efficient thermal-aware application mapping algorithm for a 2D NoC has been presented. It has been shown that the proposed mapping algorithm reduces the effective area reeling under high temperatures when compared to the state of the art.
Resumo:
Initialism is a new word proposed to indicate the "shade-avoidance syndrome". Plants detect the presence of neighbor plants very early in the growing season through changes in light quality. They modify the allocation of photosynthesis products privileging shoot growth over the roots. One of the hypotheses of the authors is that, when weed management is timely scheduled, a "blind" crop could be more productive because it would avoid an imbalance on the shoot:root ratio (S:R). Two strategies were developed to test this hypothesis: a) to use the classical Yoda's Law to screen several crops for insensitivity to S:R imbalance; b) to evaluate several growth regulators to control the plant responses to crowding. Experimental results confirm that both strategies can yield insensitive plants. The possibilities of the use of this knowledge are discussed.
Resumo:
Papperstillverkningen störs ofta av oönskade föreningar som kan bilda avsättningar på processytor, vilket i sin tur kan ge upphov till störningar i pappersproduktionen samt försämring av papperskvaliteten. Förutom avsättningar av vedharts är stenliknande avlagringar av svårlösliga salter vanliga. I vårt dagliga liv är kalkavlagringar i kaffe- och vattenkokare exempel på liknande problem. I massa- och pappersindustrin är en av de mest problematiska föreningarna kalciumoxalat; detta salt är nästan olösligt i vatten och avlagringarna är mycket svåra att avlägsna. Kalciumoxalat är också känt som en av orsakerna till njurstenar hos människor. Veden och speciellt barken innehåller alltid en viss mängd oxalat men en större källa är oxalsyra som bildas när massan bleks med oxiderande kemikalier, t.ex. väteperoxid. Kalciumoxalat bildas när oxalsyran reagerar med kalcium som kommer in i processen med råvattnet, veden eller olika tillsatsmedel. I denna avhandling undersöktes faktorer som påverkar bildningen av oxalsyra och utfällningen av kalciumoxalat, med hjälp av bleknings- och utfällningsexperiment. Forskningens fokus låg speciellt på olika sätt att förebygga uppkomsten av avlagringar vid tillverkning av trähaltigt papper. Resultaten i denna avhandling visar att bildningen av oxalsyra samt utfällning av kalciumoxalat kan påverkas genom processtekniska och våtändskemiska metoder. Noggrann avbarkning av veden, kontrollerade förhållanden under den alkaliska peroxidblekningen, noggrann hantering och kontroll av andra lösta och kolloidala substanser, samt utnyttjande av skräddarsydd kemi för kontroll av avlagringar är nyckelfaktorer. Resultaten kan utnyttjas då man planerar blekningssekvenser för olika massor samt för att lösa problem orsakade av kalciumoxalat. Forskningsmetoderna som användes i utfällningsstudierna samt för utvärdering av tillsatsmedel kan också utnyttjas inom andra områden, t.ex. bryggeri- och sockerindustrin, där kalciumoxalatproblem är vanligt förekommande. -------------------------------------------- Paperinvalmistusta häiritsevät usein erilaiset epäpuhtaudet, jotka kiinnittyvät prosessipinnoille ja haittaavat tuotantoa sekä paperin laatua. Puun pihkan lisäksi eräs yleinen ongelma on niukkaliukoisten suolojen aiheuttamat kivettymät. Kalkkisaostuma kahvinkeittimessä on esimerkki vastaavasta ongelmasta arkielämässä. Massa- ja paperiteollisuudessa yksi hankalimmista kivettymien muodostajista on kalsiumoksalaatti, koska se on lähes liukenematonta ja sen aiheuttamat saostumat ovat erittäin vaikeasti poistettavia. Kalsiumoksalaatti on yleisesti tunnettu myös munuaiskivien aiheuttajana ihmisillä. Puu ja varsinkin sen kuori sisältää aina jonkin verran oksalaattia, mutta suurempi lähde on kuitenkin oksaalihappo jota muodostuu valkaistaessa massaa hapettavilla kemikaaleilla, kuten vetyperoksidilla. Kalsiumoksalaattia syntyy kun veden, puun ja lisäaineiden mukana prosessiin tuleva kalsium reagoi oksalaatin kanssa. Tässä väitöskirjatyössä tutkittiin oksaalihapon muodostumiseen ja kalsiumoksalaatin saostumiseen vaikuttavia tekijöitä valkaisu- ja saostumiskokeiden avulla. Tutkimuksen painopiste oli saostumien ehkäisemisessä puupitoisten painopaperien valmistuksessa. Työssä saadut tulokset osoittavat että oksaalihapon muodostumiseen ja kalsiumoksalaatin saostumiseen voidaan vaikuttaa sekä prosessiteknisten että märänpään kemian keinojen avulla. Tehokas puun kuorinta, optimoidut olosuhteet peroksidivalkaisussa, muiden liuenneiden ja kolloidisten aineiden hallinta sekä räätälöidyn kemian hyödyntäminen kalsiumoksalaattisaostumien torjunnassa ovat keskeisissä rooleissa ongelmien välttämiseksi. Väitöskirjatyön tuloksia voidaan hyödyntää massan valkaisulinjoja suunniteltaessa sekä kalsiumoksalaatin aiheuttamien ongelmien ratkaisemisessa. Tutkimusmenetelmiä, joita käytettiin saostumiskokeissa ja eri lisäaineiden vaikutusten arvioinnissa, voidaan hyödyntää massa- ja paperiteollisuuden lisäksi myös muilla alueilla, kuten sokeri- ja panimoteollisuudessa, joissa ongelma on myös yleinen.
Resumo:
The ALS-inhibiting herbicides, especially metsulfuron-methyl, are widely used for weed control, mainly wheat and barley in southern Brazil. Raphanus raphanistrum is a major weed of winter crops. However, in recent years, R.raphanistrum, after being treated with metsulfuron, has shown no symptoms of toxicity, possibly due to herbicide resistance. Aiming to evaluate the existence of R.raphanistrum biotypes resistant to metsulfuron, an experiment was conducted in a greenhouse, in a completely randomized design with four replications. The plots consisted of pots with six plants. The treatments consisted of the interaction of resistant R. raphanistrum (biotype R) and susceptible R. raphanistrum (biotypes S) with ten doses of the herbicide (0.0; 0.6; 1.2; 2.4; 4.8; 9.6; 19.2; 38.4; 76.8 and 153.6 g i.a. ha-1). The application of the test herbicides occurred when the crop was at the stage of 3 to 4 true leaves. The variables analyzed were control and dry matter accumulation. Statistical analysis of dose-response curves was performed by non linear regression. Biotype S was susceptible to the herbicide even at doses below the recommended. Biotype R was insensitive to the herbicide obtaining values of resistance factor (F) higher than 85. The dose-response curve confirmed the existence of R. raphanistrum biotypes with high level of resistance to metsulfuron-methyl.
Resumo:
Adapting and scaling up agile concepts, which are characterized by iterative, self-directed, customer value focused methods, may not be a simple endeavor. This thesis concentrates on studying challenges in a large-scale agile software development transformation in order to enhance understanding and bring insight into the underlying factors for such emerging challenges. This topic is approached through understanding the concepts of agility and different methods compared to traditional plan-driven processes, complex adaptive theory and the impact of organizational culture on agile transformational efforts. The empirical part was conducted by a qualitative case study approach. The internationally operating software development case organization had a year of experience of an agile transformation effort during it had also undergone organizational realignment efforts. The primary data collection was conducted through semi-structured interviews supported by participatory observation. As a result the identified challenges were categorized under four broad themes: organizational, management, team dynamics and process related. The identified challenges indicate that agility is a multifaceted concept. Agile practices may bring visibility in issues of which many are embedded in the organizational culture or in the management style. Viewing software development as a complex adaptive system could facilitate understanding of the underpinning philosophy and eventually solving the issues: interactions are more important than processes and solving a complex problem, such a novel software development, requires constant feedback and adaptation to changing requirements. Furthermore, an agile implementation seems to be unique in nature, and agents engaged in the interaction are the pivotal part of the success of achieving agility. In case agility is not a strategic choice for whole organization, it seems additional issues may arise due to different ways of working in different parts of an organization. Lastly, detailed suggestions to mitigate the challenges of the case organization are provided.
Resumo:
Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014