993 resultados para saddle velocities
Resumo:
A three-dimensional primitive equation model and its application to a tidal estuary is described. The model solves the primitive equations for incompressible fluids with Boussinesq and hydrostatic approximations. The discretization is based on the finite volume method and allows a general vertical coordinate. The computational code is implemented in such a way that different vertical coordinates can be used in different parts of the domain. The model was designed to be able to simulate the flow both in the open ocean and in coastal and estuarine zones and can be coupled in a simple way to ecological models. The model was implemented successfully in several estuarine and coastal areas. Results are show for the Sado estuary in Portugal to illustrate model accuracy and potential. Quantitative validation is based on field data (water levels and velocities) while qualitative verification is based on the analysis of secondary flows.
Resumo:
The residence time has long been used as a classification parameter for estuaries and other semi- enclosed water bodies. It aims to quantify the time water remains inside the estuary, being used as an indicator both for pollution assessment and for ecological processes. Estuaries with a short residence time will export nutrients from upstream sources more rapidly then estuaries with longer residence time. On the other hand the residence time determines if micro-algae can stay long enough to generate a bloom. As a consequence, estuaries with very short residence time are expected to have much lower algae blooms, then estuaries with longer residence time. In addition, estuaries with residence times shorter than the doubling time of algae cells will inhibit formation of algae blooms (EPA, 2001). The residence time is also an important issue for processes taking place in the sediment. The fluxes of particulate matter and associated adsorbed species from the water column to the sediment depends of the particle’s vertical velocity, water depth and residence time. This is particularly important for the fine fractions with lower sinking velocities. The question is how to compute the residence time and how does it depend on the computation method adopted.
Resumo:
Tese de dout., Ciências do Mar, da Terra e do Ambiente (Ciências do Mar-Oceanografia Física), Faculdade de Ciências e Tecnologia, Univ. do Algarve, 2011
Resumo:
Tese de doutoramento, Biologia (Ecologia), Universidade de Lisboa, Faculdade de Ciências, 2014
Resumo:
Senior thesis written for Oceanography 445
Resumo:
Este trabalho apresenta o estudo das leis de propagação das velocidades de vibração resultantes do uso de explosivo em diferentes maciços. Foram efectuados estudos para três tipos de maciços diferentes, granito, quartzito e calcário. Efectuaram-se campanhas de monitorização e registo dos dados em cada uma das situações. Caracterizando e utilizando duas leis de propagação de velocidades no maciço, a de Johnson e Langefors, calculou-se as suas variáveis por método estatístico de regressões lineares múltiplas. Com a obtenção das variáveis fizeram-se estudos de previsão dos valores de vibração a obter utilizando a carga explosiva aplicada nos desmontes. Através dos valores de vibração obtidos em cada pega de fogo para cada tipo de maciço comparou-se quais das duas leis apresentam o valor de velocidade de vibração menor desviado do real. Conforme ficou verificado neste estudo, a equação de Langefors garante uma mais-valia da sua aplicação na previsão das velocidades de vibração pois joga favoravelmente a nível da segurança assim como apresenta um menor desvio face à equação de Johnson quando comparada com o valor real de vibração obtido. Com isto o método de utilização de regressões lineares múltiplas como cálculo dos efeitos vibratórios é extremamente vantajoso a nível de prevenção de danos e cálculo de velocidades de vibração inferiores ao imposto pela Norma.
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Electrotécnica
Resumo:
The elastic behavior of the demand consumption jointly used with other available resources such as distributed generation (DG) can play a crucial role for the success of smart grids. The intensive use of Distributed Energy Resources (DER) and the technical and contractual constraints result in large-scale non linear optimization problems that require computational intelligence methods to be solved. This paper proposes a Particle Swarm Optimization (PSO) based methodology to support the minimization of the operation costs of a virtual power player that manages the resources in a distribution network and the network itself. Resources include the DER available in the considered time period and the energy that can be bought from external energy suppliers. Network constraints are considered. The proposed approach uses Gaussian mutation of the strategic parameters and contextual self-parameterization of the maximum and minimum particle velocities. The case study considers a real 937 bus distribution network, with 20310 consumers and 548 distributed generators. The obtained solutions are compared with a deterministic approach and with PSO without mutation and Evolutionary PSO, both using self-parameterization.
Resumo:
Trabalho Final de Mestrado elaborado no Laboratório Nacional de Engenharia Civil (LNEC) para a obtenção do grau de Mestre em Engenharia Civil pelo Instituto Superior de Engenharia de Lisboa no âmbito do protocolo de cooperação entre o ISEL e o LNEC
Resumo:
We present a novel approach of Stereo Visual Odometry for vehicles equipped with calibrated stereo cameras. We combine a dense probabilistic 5D egomotion estimation method with a sparse keypoint based stereo approach to provide high quality estimates of vehicle’s angular and linear velocities. To validate our approach, we perform two sets of experiments with a well known benchmarking dataset. First, we assess the quality of the raw velocity estimates in comparison to classical pose estimation algorithms. Second, we added to our method’s instantaneous velocity estimates a Kalman Filter and compare its performance with a well known open source stereo Visual Odometry library. The presented results compare favorably with state-of-the-art approaches, mainly in the estimation of the angular velocities, where significant improvements are achieved.
Resumo:
In this paper we propose a novel fully probabilistic solution to the stereo egomotion estimation problem. We extend the notion of probabilistic correspondence to the stereo case which allow us to compute the whole 6D motion information in a probabilistic way. We compare the developed approach against other known state-of-the-art methods for stereo egomotion estimation, and the obtained results compare favorably both for the linear and angular velocities estimation.
Resumo:
Objective: Overuse injuries in violinists are a problem that has been primarily analyzed through the use of questionnaires. Simultaneous 3D motion analysis and EMG to measure muscle activity has been suggested as a quantitative technique to explore this problem by identifying movement patterns and muscular demands which may predispose violinists to overuse injuries. This multi-disciplinary analysis technique has, so far, had limited use in the music world. The purpose of this study was to use it to characterize the demands of a violin bowing task. Subjects: Twelve injury-free violinists volunteered for the study. The subjects were assigned to a novice or expert group based on playing experience, as determined by questionnaire. Design and Settings: Muscle activity and movement patterns were assessed while violinists played five bowing cycles (one bowing cycle = one down-bow + one up-bow) on each string (G, D, A, E), at a pulse of 4 beats per bow and 100 beats per minute. Measurements: An upper extremity model created using coordinate data from markers placed on the right acromion process, lateral epicondyle of the humerus and ulnar styloid was used to determine minimum and maximum joint angles, ranges of motion (ROM) and angular velocities at the shoulder and elbow of the bowing arm. Muscle activity in right anterior deltoid, biceps brachii and triceps brachii was assessed during maximal voluntary contractions (MVC) and during the playing task. Data were analysed for significant differences across the strings and between experience groups. Results: Elbow flexion/extension ROM was similar across strings for both groups. Shoulder flexion/extension ROM increaslarger for the experts. Angular velocity changes mirrored changes in ROM. Deltoid was the most active of the muscles assessed (20% MVC) and displayed a pattern of constant activation to maintain shoulder abduction. Biceps and triceps were less active (4 - 12% MVC) and showed a more periodic 'on and off pattern. Novices' muscle activity was higher in all cases. Experts' muscle activity showed a consistent pattern across strings, whereas the novices were more irregular. The agonist-antagonist roles of biceps and triceps during the bowing motion were clearly defined in the expert group, but not as apparent in the novice group. Conclusions: Bowing movement appears to be controlled by the shoulder rather than the elbow as shoulder ROM changed across strings while elbow ROM remained the same. Shoulder injuries are probably due to repetition as the muscle activity required for the movement is small. Experts require a smaller amount of muscle activity to perform the movement, possibly due to more efficient muscle activation patterns as a result of practice. This quantitative multidisciplinary approach to analysing violinists' movements can contribute to fuller understanding of both playing demands and injury mechanisms .
Resumo:
Bank stabilization structures are used to prevent the loss of valuable land within the urban environment and the decision for the type of structure used depends on the properties of the stream. In the urban areas of Southern Ontario there is a preference for the use of armourstone blocks as bank stabilization. The armourstone revetment is a free standing stone structure with large blocks of stone layered vertically and offset from one another. During fieldwork at Forty Mile Creek in Grimsby, Ontario armourstone failure was identified by the removal of two stones within one column from the wall. Since the footer stones were still in place, toe scour was eliminated as a cause of failure. Through theoretical, field, and experimental work the process of suction has been identified as a mode of failure for the armourstone wall and the process of suction works similarly to quarrying large blocks of rock off bedrock streambeds. The theory of lateral suction has previously not been taken into consideration for the design of these walls. The physical and hydraulic evidence found in the field and studied during experimental work indicate that the armourstone wall is vulnerable to the process of suction. The forces exerted by the flow and the resistance of the block determine the stability of the armourstone block within the wall. The design of the armourstone wall, high surface velocities, and short pulses of faster flowing water within the profile could contribute to armourstone failure by providing the forces needed for suction to occur, therefore adjustments to the design of the wall should be made in order to limit the effect.
Resumo:
The assembly and testing of apparatus for the measurement of elastic and photoelastic constants by Brillouin scattering, using a Fabry-Perot interferometer and with argon ion laser excitation is described. Such measurements are performed on NaCI, KBr and LiF using the A = 488.0 nm laser line. The elastic constants obtained here are in very good agreement with the ultrasonic data for all three materials. The discrepancy between ultrasonic and hypersonic sound velocities which was reported by some authors for KBr and LiF is not confirmed, and the elastic constants obtained for LiF are the most accurate to date. Also, the present photoelastic constants are in good agreement with the data obtained by ultrasonic techniques for all three crystals. The results for the KBr and LiF crystals constitute the first set of photoelastic constants obtained for these materials by Brillouin spectroscopy. Our results for LiF are the best available to date.
Resumo:
Geochemical examination of the rock matrix and cements from core material extracted from four oil wells within southwestern Ontario suggest various stages of diagenetic alteration and preservation of the Trenton Group carbonates. The geochemical compositions of Middle Ordovician (LMC) brachiopods reflect the physicochemical water conditions of the ambient depositional environment. The sediments appear to have been altered in the presence of mixed waters during burial in a relatively open diagenetic microenvironment. Conodont CAl determination suggests that the maturation levels of the Trenton Group carbonates are low and proceeded at temperatures of about 30 - 50°C within the shallow burial environment. The Trenton Group carbonates are characterized by two distinct stages of dolomitization which proceeded at elevated temperatures. Preexisting fracture patterns, and block faulting controlled the initial dolomitization of the precursor carbonate matrix. Dolomitization progressed In the presence of warm fluids (60 75°C) with physicochemical conditions characteristic of a progressively depleted basinal water. The matrix is mostly Idiotopic-S and Idiotopic-E dolomite, with Xenotopic-A dolomite dominating the matrix where fractures occur. The second stage of dolomitization involved hydrothermal basinal fluid(s) with temperatures of about 60 - 70°C. These are the postulated source for the saddle dolomite and blocky calcite cements occurring in pore space and fractures. Rock porosity was partly occluded by Idiotopic-E type dolomite. Late stage saddle dolomite, calcite, anhydrite, pyrite, marcasite and minor sphalerite and celestite cements effectively fill any remaining porosity within specific horizons. Based on cathode luminescence, precipitation of the different diagenetic phases probably proceeded in open diagenetic systems from chemically homogeneous fluids. Ultraviolet fluorescence of 11 the matrix and cements demonstrated that hydrocarbons were present during the earliest formation of saddle dolomite. Oxygen isotope values of -7.6 to -8.5 %0 (PDB), and carbon isotope values of - 0.5 and -3.0 %0 (PDB) from the latest stage dog-tooth calcite cement suggest that meteoric water was introduced into the system during their formation. This is estimated to have occurred at temperatures of about 25 - 40°C. Specific facies associations within the Trenton Group carbonates exhibit good hydrocarbon generating potential based on organic carbon preservation (1-3.5%). Thermal maturation and Lopatin burial-history evaluations suggest that hydrocarbons were generated within the Trenton Group carbonates some time after 300 Ma . Progressively depleted vanadium trends measured from hydrocarbon samples within southwestern Ontario suggests its potential use as a hydrocarbon migration indicator on local (within an oilfield) and on regional scales.