960 resultados para rotational oscillation
Resumo:
In this paper, a new phenomenological theory with strain gradient effects is proposed to account for the size dependence of plastic deformation at micro- and submicro-length scales. The theory fits within the framework of general couple stress theory and three rotational degrees of freedom omega(i) are introduced in addition to the conventional three translational degrees of freedom mu(i). omega(i) is called micro-rotation and is the sum of material rotation plus the particles' relative rotation. While the new theory is used to analyze the crack tip field or the indentation problems, the stretch gradient is considered through a new hardening law. The key features of the theory are that the rotation gradient influences the material character through the interaction between the Cauchy stresses and the couple stresses; the term of stretch gradient is represented as an internal variable to increase the tangent modulus. In fact the present new strain gradient theory is the combination of the strain gradient theory proposed by Chen and Wang (Int. J. Plast., in press) and the hardening law given by Chen and Wang (Acta Mater. 48 (2000a) 3997). In this paper we focus on the finite element method to investigate material fracture for an elastic-power law hardening solid. With remotely imposed classical K fields, the full field solutions are obtained numerically. It is found that the size of the strain gradient dominance zone is characterized by the intrinsic material length l(1). Outside the strain gradient dominance zone, the computed stress field tends to be a classical plasticity field and then K field. The singularity of stresses ahead of the crack tip is higher than that of the classical field and tends to the square root singularity, which has important consequences for crack growth in materials by decohesion at the atomic scale. (C) 2002 Elsevier Science Ltd. All rights reserved.
Two bifurcation transitions of the floating half zone convection in a fat liquid bridge of larger Pr
Resumo:
The transient process of the thermocapillary convection was obtained for the large Pu floating half zone by using the method of three-dimensional and unsteady numerical simulation. The convection transits directly from steady and axisymmetric state to oscillatory flow for slender liquid bridge, and transits first from steady and axisymmetric convection to the steady and non-axisymmetric convection, then, secondly to the oscillatory convection for the fatter liquid bridge. This result implies that the volume of liquid bridge is not only a sensitive critical parameter for the onset of oscillation, but also relates to the new mechanism for the onset of instability in the floating half zone convection even in case of large Prandtl number fluid.
Resumo:
为考察饱和砂土地基受到水压振荡作用时的动力响应,根据两相连续介质理论,分析了液化发展、液化区厚度、颗粒速度等.研究结果表明,随着土强度和渗透性的降低与载荷强度的增加,液化发展速率加快;随着土强度的降低和渗透性、载荷强度的增加,变形量增加;如果土的初始分布不均匀,则在渗透性小的位置,应变和孔隙水压力将剧烈变化,这可以解释为什么在一定条件下土中会出现断裂和水层.
Resumo:
The linear instability analysis of the present paper shows that the thermocapillary convection in a half floating zone of larger Prandtl number has a steady instability mode w(i) = 0 and m = 1 for a fat liquid bridge V = 1.2 with small geometrical aspect ratio A = 0.6. This conclusion is different from the usual idea of hydrothermal instability, and implies that the instability of the system may excite a steady and axial asymmetric state before the onset of oscillation in the ease of large Prandtl number.
Resumo:
The acoustic response of conventional mechanical oscillators, such as a piezoelectric crystal, is predominantly harmonic at modest amplitudes. However, here, we observe from the electrical response that significant motional anharmonicity is introduced in the presence of attached analyte. Experiments were conducted with streptavidin-coated polystyrene microbeads of various sizes attached to a quartz crystal resonator via specific and nonspecific molecular tethers in liquid. Quantitative analysis reveals that the deviation of odd Fourier harmonics of the response caused by introduction of microbeads as a function of oscillation amplitude presents a unique signature of the molecular tether. Hence, the described anharmonic detection technique (ADT) based on this function allows screening of biomolecules and provides an additional level of selectivity in receptor-based detection that is often associated with nonspecific interactions. We also propose methods to extract mechanical force-extension characteristics of the molecular tether and activation energy using this technique.
Resumo:
The application of the Quartz Crystal Microbalance (QCM) for biochemical sensing is well known. However, utilizing the nonlinear response of the QCM at elevated amplitudes has received sporadic attention. This study presents results for QCM-analyte interaction that provide insight into the nonlinear dynamics of the QCM with attached analyte. In particular, interactions of the QCM with polystyrene microbeads physisorbed via self-assembled monolayer (SAM) were studied through experiments and modelling. It was found that the response of the QCM coupled to these surface adsorbents is anharmonic even at low oscillation amplitudes and that the nonlinear signals from such interactions are much higher than those for bare quartz. Therefore, these signals can potentially be used as sensitive signatures of adsorbents and their kinetics on the surface. ©2009 IEEE.
Resumo:
The strain gradient effect becomes significant when the size of fracture process zone around a crack tip is comparable to the intrinsic material length l, typically of the order of microns. Using the new strain gradient deformation theory given by Chen and Wang, the asymptotic fields near a crack tip in an elastic-plastic material with strain gradient effects are investigated. It is established that the dominant strain field is irrotational. For mode I plane stress crack tip asymptotic field, the stress asymptotic field and the couple stress asymptotic field can not exist simultaneously. In the stress dominated asymptotic field, the angular distributions of stresses are consistent with the classical plane stress HRR field; In the couple stress dominated asymptotic field, the angular distributions of couple stresses are consistent with that obtained by Huang et al. For mode II plane stress and plane strain crack tip asymptotic fields, only the stress-dominated asymptotic fields exist. The couple stress asymptotic field is less singular than the stress asymptotic fields. The stress asymptotic fields are the same as mode II plane stress and plane strain HRR fields, respectively. The increase in stresses is not observed in strain gradient plasticity for mode I and mode II, because the present theory is based only on the rotational gradient of deformation and the crack tip asymptotic fields are irrotational and dominated by the stretching gradient.
Resumo:
Free surface deformation is one of the most important physical phenomena in fluids with free surface. In the present paper, convection and surface deformation caused by thermocapillary effect in a rectangular cavity were investigated. In ground experiments, the convection was also affected by gravity. The cavity has a horizontal cross section of 52mm×42mm and the thikkness of the liquid layer is 4mm. Temperature difference between two sides of the liquid layer was increased gradually, and the flow in liquid layer will develop from steady to unstable convection. An optical diagnostic system consisting of a revised Michelson interferometer with image processor was developed to study fluid surface deformation in convection, and the displacements of free surface oscillation were determined. PIV technique was adopted to observe the evolution of flow pattern, and the velocity fields were obtained quantitatively. The present experiments demonstrate that surface deformation is quite distinct in buoyant-thermocapillary convection. in order to understand the mechanism of buoyant-thermocapillary convection, not only the hydrothermal wave instability but also the surface wave instability should be discussed.
Resumo:
It is assumed that both translational and rotational nonequilibrium cross-relaxations play a role simultaneoulsy in low pressure supersonic cw HF chemical laser amplifier. For two-type models of gas flow medium with laminar and turbulent flow diffusion mixing, the expressions of saturated gain spectrum are derived respectively, and the numerical calculations are performed as well. The numerical results show that turbulent flow diffusion mixing model is in the best agreement with the experimental result.
Resumo:
H-2 and O-2 multiplex coherent anti-stokes Raman spectroscopy (CARS) employing a single dye laser has been explored to simultaneously determine the temperature and concentrations of H-2 and O-2 in a hydrogen-fueled supersonic combustor. Systematic calibrations were performed through a well-characterized H-2/air premixed flat-flame burner. In particular, temperature measurement was accomplished using the intensity ratio of the H-2 S(5) and S(6) rotational lines, whereas extraction of the H-2 and O-2 concentrations was obtained from the H-2 S(6) and O-2 Q-branch, respectively. Details of the calibration procedure and data reduction are discussed. Quantification of the supersonic mixing and combustion characteristics applying the present technique has been demonstrated to be feasible. The associated detection limits as well as possible improvements are also identified.
Resumo:
A new phenomenological deformation theory with strain gradient effects is proposed. This theory, which belongs to nonlinear elasticity, fits within the framework of general couple stress theory and involves a single material length scale l. In the present theory three rotational degrees of freedom omega(i) are introduced in addition to the conventional three translational degrees of freedom u(i). omega(i) has no direct dependence upon ui and is called the micro-rotation, i.e. the material rotation theta(i) plus the particle relative rotation. The strain energy density is assumed to only be a function of the strain tensor and the overall curvature tensor, which results in symmetric Cauchy stresses. Minimum potential principle is developed for the strain gradient deformation theory version. In the limit of vanishing 1, it reduces to the conventional counterparts: J(2) deformation theory. Equilibrium equations, constitutive relations and boundary conditions are given in details. Comparisons between the present theory and the theory proposed by Shizawa and Zbib (Shizawa, K., Zbib, H.M., 1999. A thermodynamical theory gradient elastoplasticity with dislocation density Censor: fundamentals. Int. J. Plast. 15, 899) are given. With the same hardening law as Fleck et al. (Fleck, N.A., Muller, G.H., Ashby, M.F., Hutchinson, JW., 1994 Strain gradient plasticity: theory and experiment. Acta Metall. Mater 42, 475), the new strain gradient deformation theory is used to investigate two typical examples, i.e. thin metallic wire torsion and ultra-thin metallic beam bend. The results are compared with those given by Fleck et al, 1994 and Stolken and Evans (Stolken, J.S., Evans, A.G., 1998. A microbend test method for measuring the plasticity length scale. Acta Mater. 46, 5109). In addition, it is explained for a unit cell that the overall curvature tensor produced by the overall rotation vector is the work conjugate of the overall couple stress tensor. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
In this experimental and numerical study, two types of round jet are examined under acoustic forcing. The first is a non-reacting low density jet (density ratio 0.14). The second is a buoyant jet diffusion flame at a Reynolds number of 1100 (density ratio of unburnt fluids 0.5). Both jets have regions of strong absolute instability at their base and this causes them to exhibit strong self-excited bulging oscillations at welldefined natural frequencies. This study particularly focuses on the heat release of the jet diffusion flame, which oscillates at the same natural frequency as the bulging mode, due to the absolutely unstable shear layer just outside the flame. The jets are forced at several amplitudes around their natural frequencies. In the non-reacting jet, the frequency of the bulging oscillation locks into the forcing frequency relatively easily. In the jet diffusion flame, however, very large forcing amplitudes are required to make the heat release lock into the forcing frequency. Even at these high forcing amplitudes, the natural mode takes over again from the forced mode in the downstream region of the flow, where the perturbation is beginning to saturate non-linearly and where the heat release is high. This raises the possibility that, in a flame with large regions of absolute instability, the strong natural mode could saturate before the forced mode, weakening the coupling between heat release and incident pressure perturbations, hence weakening the feedback loop that causes combustion instability. © 2009 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
Two Bifurcation Transition Processes in Floating Half Zone Convection of Larger Prandtl Number Fluid
Resumo:
Processes of the onset oscillation in the thermocapillaxy convection under the Earth's gravity are investigated by the numerical simulation and experiments in a floating half zone of large Prandtl number with different volume ratio. Both computational and experimental results show that the steady and axisymmetric convection turns to the oscillatory convection of m=1 for the slender liquid bridge, and to the oscillatory convection before a steady and 3D asymmetric state for the case of a fat liquid bridge. It implies that, there are two critical Marangoni numbers related, respectively, to these two bifurcation transitions for the fat liquid bridge. The computational results agree with the results of ground-based experiments.
Resumo:
Receptor-based detection of pathogens often suffers from non-specific interactions, and as most detection techniques cannot distinguish between affinities of interactions, false positive responses remain a plaguing reality. Here, we report an anharmonic acoustic based method of detection that addresses the inherent weakness of current ligand dependant assays. Spores of Bacillus subtilis (Bacillus anthracis simulant) were immobilized on a thickness-shear mode AT-cut quartz crystal functionalized with anti-spore antibody and the sensor was driven by a pure sinusoidal oscillation at increasing amplitude. Biomolecular interaction forces between the coupled spores and the accelerating surface caused a nonlinear modulation of the acoustic response of the crystal. In particular, the deviation in the third harmonic of the transduced electrical response versus oscillation amplitude of the sensor (signal) was found to be significant. Signals from the specifically-bound spores were clearly distinguishable in shape from those of the physisorbed streptavidin-coated polystyrene microbeads. The analytical model presented here enables estimation of the biomolecular interaction forces from the measured response. Thus, probing biomolecular interaction forces using the described technique can quantitatively detect pathogens and distinguish specific from non-specific interactions, with potential applicability to rapid point-of-care detection. This also serves as a potential tool for rapid force-spectroscopy, affinity-based biomolecular screening and mapping of molecular interaction networks.
Resumo:
The liquid bridge volume is a critical geometrical parameter in addition to the aspect ratio for onset of oscillation in the floating zone convection. The oscillatory features are generally divided into two characteristic regions: slender liquid bridge region and fat liquid bridge region. The oscillatory modes in two regions are discussed in the present paper.