935 resultados para response function


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aquaculture is a fast-growing industry contributing to global food security and sustainable aquaculture, which may reduce pressures on capture fisheries. The overall objective of this thesis was to look at the immunostimulatory effects of different aspects of aquaculture on the host response of the edible sea urchin, Paracentrotus lividus, which are a prized delicacy (roe) in many Asian and Mediterranean countries. In Chapter 1, the importance of understanding the biology, ecology, and physiology of P. lividus, as well as the current status in the culture of this organism for mass production and introducing the thesis objectives for following chapters is discussed. As the research commenced, the difficulties of identifying individuals for repeat sampling became clear; therefore, Chapter 2 was a tagging experiment that indicated PIT tagging was a successful way of identifying individual sea urchins over time with a high tag retention rate. However, it was also found that repeat sampling via syringe to measure host response of an individual caused stress which masked results and thus animals would be sampled and sacrificed going forward. Additionally, from personal observations and discussion with peers, it was suggested to look at the effect that diet has on sea urchin immune function and the parameters I measured which led to Chapter 3. In this chapter, both Laminaria digitata and Mytilus edulis were shown to influence measured immune parameters of differential cell counts, nitric oxide production, and lysozyme activity. Therefore, trials commencing after Trial 5 in Chapter 4, were modified to include starvation in order to remove any effect of diet. Another important aspect of culturing any organism is the study of their immune function and its response to several immunostimulatory agents (Chapter 4). Zymosan A was shown to be an effective immunostimulatory agent in P. lividus. Further work on handled/stored animals (Chapter 5) showed Zymosan A reduced the measured levels of some immune parameters measured relative to the control, which may reduce the amount of stress in the animals. In Chapter 6, animals were infected with Vibrio anguillarum and, although V. anguillarum, impacted immune parameters of P. lividus, it did not cause mortality as predicted. Lastly, throughout this thesis work, it was noted that the immune parameters measured produced different values at different times of the year (Chapter 7); therefore, using collated baseline (control) data, results were compiled to observe seasonal effects. It was determined that both seasonality and sourcing sites influenced immune parameter measurements taken at different times throughout the year. In conclusion, this thesis work fits into the framework of development of aquaculture practices that affect immune function of the host and future research focusing on the edible sea urchin, P. lividus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Insulin-like Growth Factor-1 (IGF-1) signalling promotes cell growth and is associated with cancer progression, including metastasis, epithelial-mesenchymal transition (EMT), and resistance to therapy. Mitochondria play an essential role in cancer cell metabolism and accumulating evidence demonstrates that dysfunctional mitochondria associated with release of mitochondrial reactive oxygen species (ROS) can influence cancer cell phenotype and invasive potential. We previously isolated a mitochondrial UTP carrier (PNC1/SLC25A33) whose expression is regulated by IGF-1, and which is essential for mitochondrial maintenance. PNC1 suppression in cancer cells results in mitochondrial dysfunction and acquisition of a profound ROS-dependent invasive (EMT) phenotype. Moreover, over-expression of PNC1 in cancer cells that exhibit an EMT phenotype is sufficient to suppress mitochondrial ROS production and reverse the invasive phenotype. This led us to investigate the IGF-1-mitochondrial signalling axis in cancer cells. We found that IGF-1 signalling supports increased mitochondrial mass and Oxphos potential through a PI3K dependant pathway. Acute inhibition of IGF-1R activity with a tyrosine kinase inhibitor results in dysfunctional mitochondria and cell death. We also observed an adaptive response to IGF-1R inhibition upon prolonged exposure to the kinase inhibitor, where increased expression of the EGF receptor can compensate for loss of mitochondrial mass through activation of PI3K/mTOR signalling. However, these cells exhibit impaired mitochondrial biogenesis and mitophagy. We conclude that the IGF-1 is required for mitochondrial maintenance and biogenesis in cancer cells, and that pharmacological inhibition of this pathway may induce mitochondrial dysfunction and may render the cells more sensitive to glycolysis-targeted drugs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study, we aimed to examine the impact of cardiopulmonary bypass (CPB) on expression and function of NOD1 and NOD2 in children with congenital heart disease (CHD), in an attempt to clarify whether NOD1 and NOD2 signaling is involved in the modulation of host innate immunity against postoperative infection in pediatric CHD patients. Peripheral blood samples were collected from pediatric CHD patients at five different time points: before CPB, immediately after CPB, and 1, 3, and 7 days after CPB. Real-time PCR, Western blot, and ELISA were performed to measure the expression of NOD1 and NOD2, their downstream signaling pathways, and inflammatory cytokines at various time points. Proinflammatorycytokine IL-6 and TNF-α levels in response to stimulation with either the NOD1 agonist Tri-DAP or the NOD2 agonist MDP were significantly reduced after CPB compared with those before CPB, which is consistent with a suppressed inflammatory response postoperatively. The expression of phosphorylated RIP2 and activation of the downstream signaling pathways NF-κB p65 and MAPK p38 upon Tri-DAP or MDP stimulation in PBMCs were substantially inhibited after CPB. The mRNA level of NOD1 and protein levels of NOD1 and NOD2 were also markedly decreased after CPB. Our results demonstrated that NOD-mediated signaling pathways were substantially inhibited after CPB, which correlates with the suppressed inflammatory response and may account, at least in part, for the increased risk of postoperative infection in pediatric CHD patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When ligaments within the wrist are damaged, the resulting loss in range of motion and grip strength can lead to reduced earning potential and restricted ability to perform important activities of daily living. Left untreated, ligament injuries ultimately lead to arthritis and chronic pain. Surgical repair can mitigate these issues but current procedures are often non-anatomic and unable to completely restore the wrist’s complex network of ligaments. An inability to quantitatively assess wrist function clinically, both before and after surgery, limits the ability to assess the response to clinical intervention. Previous work has shown that bones within the wrist move in a similar pattern across people, but these patterns remain challenging to predict and model. In an effort to quantify and further develop the understanding of normal carpal mechanics, we performed two studies using 3D in vivo carpal bone motion analysis techniques. For the first study, we measured wrist laxity and performed CT scans of the wrist to evaluate 3D carpal bone positions. We found that through mid-range radial-ulnar deviation range of motion the scaphoid and lunate primarily flexed and extended; however, there was a significant relationship between wrist laxity and row-column behaviour. We also found that there was a significant relationship between scaphoid flexion and active radial deviation range of motion. For the second study, an analysis was performed on a publicly available database. We evaluated scapholunate relative motion over a full range of wrist positions, and found that there was a significant amount of variation in the location and orientation of the rotation axis between the two bones. Together the findings from the two studies illustrate the complexity and subject specificity of normal carpal mechanics, and should provide insights that can guide the development of anatomical wrist ligament repair surgeries that restore normal function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: It is well known that sprint interval training (SIT), induces significant increases in peak oxygen uptake (VO2peak) at the group level. However, there have been only a few studies that have addressed the variability of VO2peak response following SIT, and precise mechanism(s) that may explain individual magnitude of response are unknown. Purpose: Therefore, the purpose of this thesis was to: 1) examine the inter-individual variability of the VO2peak response following SIT, 2) to inspect the relationship between changes in both central and peripheral measures and changes in VO2peak, and 3) to assess if peripheral or central adaptations play a role in whether an individual is a high or low responder with respect to VO2peak. Subjects: Twenty-two young, recreationally active males (age: 20.4 1.7 years; weight: 78.4 10.2 kg; VO2peak: 3.7 0.62 L/min) Methods: VO2peak (L/min), peak cardiac output (Qpeak [L/min]), and peak deoxygenated hemoglobin (HHbpeak [mM]) were measured before and after 16 sessions of SIT (Tabata Protocol) over four weeks. Peak a-vO2diff was calculated using a derivation of the Fick equation. Results: Due to a systematic error, HHbpeak could not be used to differentiate between individual responses. There was a large range of VO2peak response from pre to post testing (-4.75 to 32.18% change) and there was a significant difference between the Low Response Group (LRG) (n=8) and the High Response Group (HRG) (n=8) [f(1, 14)= 64.27, p<0.001]. Furthermore, there was no correlation between delta () VO2peak and Qpeak (r=-0.18, p=0.46) for all participants, nor was there an interaction effect between the Low and High Response Groups [f(1,11)=0.572, p=0.47]. Lastly, there was a significant correlation between VO2peak and peak a-vO2diff [r=0.692, p<0.001], and a significant interaction effect with peak a-vO2diff [f(1, 14)= 13.27, p<0.004] when comparing the HRG to the LRG. Conclusions: There was inter-individual variability of VO2peak response following 4 weeks of SIT, but central adaptations did not influence this variation. This suggests that peripheral adaptations may be responsible for VO2peak adaptation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The walls of blood vessels are lined with a single-cell layer of endothelial cells. As blood flows through the arteries, a frictional force known as shear stress is sensed by mechanosensitive structures on the endothelium. Short and long term changes in shear stress can have a significant influence on the regulation of endothelial function. Acutely, shear stress triggers a pathway that culminates in the release of vasodilatory molecules from the endothelium and subsequent vasodilation of the artery. This endothelial response is known as flow mediated dilation (FMD). FMD is used as an index of endothelial function and is commonly assessed using reactive hyperemia (RH)-FMD, a method which elicits a large, short lived increase in shear stress following the release of a brief (5 min) forearm occlusion. A recent study found that a short term exposure (30 min) to a sustained elevation in shear stress potentiates subsequent RH-FMD. FMD can also result from a more prolonged, sustained increase in shear stress elicited by handgrip exercise (HGEX-FMD). There is evidence to suggest that interventions and conditions impact FMD resulting from sustained and transient shear stress stimuli differently, indicating that HGEX-FMD and RH-FMD provide different information about endothelial function. It is unknown whether HGEX-FMD is improved by short term exposure to shear stress. Understanding how exercise induced FMD is regulated is important because it contributes to blood flow responses during exercise. The study purpose was therefore to assess the impact of a handgrip exercise (intervention) induced sustained elevation in shear stress on subsequent brachial artery (BA) HGEX-FMD. Twenty healthy male participants (22±3yrs) preformed a 30-minute HGEX intervention on two experimental days. BA-FMD was assessed using either an RH or HGEX shear stress stimulus at 3 time points: pre-intervention, 10 min post and 60 min post. FMD and shear stress magnitude were determined via ultrasound. Both HGEX and RH-FMD increased significantly from pre-intervention to 10 min-post (p<0.01). These findings indicate that FMD stimulated by exercise induced increases in shear stress is potentiated by short term shear stress exposure. These findings advance our understanding regarding the regulation of endothelial function by shear stress.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hepcidin is the key regulator of systemic iron homeostasis. The iron-sensing mechanisms and the role of intracellular iron in modulating hepatic hepcidin secretion are unclear. Therefore, we created a novel cell line, recombinant-TfR1 HepG2,expressing iron-response-element-independent TFRC mRNA to promote cellular iron overload and examined the effect of excess holotransferrin (5 g/L) on cell-surface TfR1, iron content, hepcidin secretion and mRNA expressions of TFRC, HAMP, SLC40A1,HFE and TFR2. Results showed that the recombinant cells exceeded levels of cell surface TfR1 in wild-type cells under basal (2.8-fold; p<0.03) and holotransferrin supplemented conditions for 24 h and 48 h (4.4- and 7.5-fold, respectively; p<0.01). Also, these cells showed higher intracellular iron content than wild-type cells under basal (3-fold; p<0.03) and holotransferrin-supplemented conditions (6.6-fold at 4 h; p<0.01). However, hepcidin secretion was not higher than wild-type cells. Moreover, holotransferrin treatment to recombinant cells did not elevate HAMP responses compared to untreated or wild-type cells. In conclusion, increased intracellular iron content in recombinant cells did not increase hepcidin responses compared to wild-type cells, resembling hemochromatosis. Furthermore, TFR2 expression altered within 4 h of treatment, while HFE expression altered later at 24 h and 48 h, suggesting that TFR2 may function prior to HFE in HAMP regulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Demand response (DR) algorithms manipulate the energy consumption schedules of controllable loads so as to satisfy grid objectives. Implementation of DR algorithms using a centralized agent can be problematic for scalability reasons, and there are issues related to the privacy of data and robustness to communication failures. Thus, it is desirable to use a scalable decentralized algorithm for the implementation of DR. In this paper, a hierarchical DR scheme is proposed for peak minimization based on Dantzig-Wolfe decomposition (DWD). In addition, a time weighted maximization option is included in the cost function, which improves the quality of service for devices seeking to receive their desired energy sooner rather than later. This paper also demonstrates how the DWD algorithm can be implemented more efficiently through the calculation of the upper and lower cost bounds after each DWD iteration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The absolute calibration of a microchannel plate (MCP) assembly using a Thomson spectrometer for laser-driven ion beams is described. In order to obtain the response of the whole detection system to the particles’ impact, a slotted solid state nuclear track detector (CR-39) was installed in front of the MCP to record the ions simultaneously on both detectors. The response of the MCP (counts/particles) was measured for 5–58 MeV carbon ions and for protons in the energy range2–17.3 MeV. The response of the MCP detector is non-trivial when the stopping range of particles becomes larger than the thickness of the detector. Protons with energiesE>~ 10 MeV are energetic enough that they can pass through the MCP detector. Quantitative analysis of the pits formed in CR-39 and the signal generated in the MCP allowed to determine the MCP response to particles in this energy range. Moreover, a theoretical model allows to predict the response of MCP at even higher proton energies. This suggests that in this regime the MCP response is a slowly decreasing function of energy, consistently with the decrease of the deposited energy. These calibration data will enable particle spectra to be obtained in absolute terms over a broad energy range.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ground-source heat pump (GSHP) systems represent one of the most promising techniques for heating and cooling in buildings. These systems use the ground as a heat source/sink, allowing a better efficiency thanks to the low variations of the ground temperature along the seasons. The ground-source heat exchanger (GSHE) then becomes a key component for optimizing the overall performance of the system. Moreover, the short-term response related to the dynamic behaviour of the GSHE is a crucial aspect, especially from a regulation criteria perspective in on/off controlled GSHP systems. In this context, a novel numerical GSHE model has been developed at the Instituto de Ingeniería Energética, Universitat Politècnica de València. Based on the decoupling of the short-term and the long-term response of the GSHE, the novel model allows the use of faster and more precise models on both sides. In particular, the short-term model considered is the B2G model, developed and validated in previous research works conducted at the Instituto de Ingeniería Energética. For the long-term, the g-function model was selected, since it is a previously validated and widely used model, and presents some interesting features that are useful for its combination with the B2G model. The aim of the present paper is to describe the procedure of combining these two models in order to obtain a unique complete GSHE model for both short- and long-term simulation. The resulting model is then validated against experimental data from a real GSHP installation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ce projet illustre cinq études, mettant l'emphase sur le développement d'une nouvelle approche diagnostique cardiovasculaire afin d'évaluer le niveau d’oxygène contenu dans le myocarde ainsi que sa fonction microvasculaire. En combinant une séquence de résonance magnétique cardiovasculaire (RMC) pouvant détecter le niveau d’oxygène (OS), des manœuvres respiratoires ainsi que des analyses de gaz artériels peuvent être utilisés comme procédure non invasive destinée à induire une réponse vasoactive afin d’évaluer la réserve d'oxygénation, une mesure clé de la fonction vasculaire. Le nombre de tests diagnostiques cardiaques prescrits ainsi que les interventions, sont en pleine expansion. L'imagerie et tests non invasifs sont souvent effectués avant l’utilisation de procédures invasives. L'imagerie cardiaque permet d’évaluer la présence ou absence de sténoses coronaires, un important facteur économique dans notre système de soins de santé. Les techniques d'imagerie non invasives fournissent de l’information précise afin d’identifier la présence et l’emplacement du déficit de perfusion chez les patients présentant des symptômes d'ischémie myocardique. Néanmoins, plusieurs techniques actuelles requièrent la nécessité de radiation, d’agents de contraste ou traceurs, sans oublier des protocoles de stress pharmacologiques ou physiques. L’imagerie RMC peut identifier une sténose coronaire significative sans radiation. De nouvelles tendances d’utilisation de RMC visent à développer des techniques diagnostiques qui ne requièrent aucun facteur de stress pharmacologiques ou d’agents de contraste. L'objectif principal de ce projet était de développer et tester une nouvelle technique diagnostique afin d’évaluer la fonction vasculaire coronarienne en utilisant l' OS-RMC, en combinaison avec des manœuvres respiratoires comme stimulus vasoactif. Ensuite, les objectifs, secondaires étaient d’utilisés l’OS-RMC pour évaluer l'oxygénation du myocarde et la réponse coronaire en présence de gaz artériels altérés. Suite aux manœuvres respiratoires la réponse vasculaire a été validée chez un modèle animal pour ensuite être utilisé chez deux volontaires sains et finalement dans une population de patients atteints de maladies cardiovasculaires. Chez le modèle animal, les manœuvres respiratoires ont pu induire un changement significatif, mesuré intrusivement par débit sanguin coronaire. Il a été démontré qu’en présence d'une sténose coronarienne hémodynamiquement significative, l’OS-RMC pouvait détecter un déficit en oxygène du myocarde. Chez l’homme sain, l'application de cette technique en comparaison avec l'adénosine (l’agent standard) pour induire une vasodilatation coronarienne et les manœuvres respiratoires ont pu induire une réponse plus significative en oxygénation dans un myocarde sain. Finalement, nous avons utilisé les manœuvres respiratoires parmi un groupe de patients atteint de maladies coronariennes. Leurs myocardes étant altérées par une sténose coronaire, en conséquence modifiant ainsi leur réponse en oxygénation. Par la suite nous avons évalué les effets des gaz artériels sanguins sur l'oxygénation du myocarde. Ils démontrent que la réponse coronarienne est atténuée au cours de l’hyperoxie, suite à un stimuli d’apnée. Ce phénomène provoque une réduction globale du débit sanguin coronaire et un déficit d'oxygénation dans le modèle animal ayant une sténose lorsqu’un supplément en oxygène est donné. En conclusion, ce travail a permis d'améliorer notre compréhension des nouvelles techniques diagnostiques en imagerie cardiovasculaire. Par ailleurs, nous avons démontré que la combinaison de manœuvres respiratoires et l’imagerie OS-RMC peut fournir une méthode non-invasive et rentable pour évaluer la fonction vasculaire coronarienne régionale et globale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-08

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to investigate whether rinsing the mouth with a carbohydrate solution could improve skill-specific fencing performance and cognitive function following a fatigue inducing simulated bout of fencing in epee fencers. Eleven healthy, competitive epee fencers (three female; eight male; 33.9 ± 14.7 years; body mass 79 ± 16 kg; height 162 ± 54 cm) volunteered to participant in a single-blind crossover design study. During visit 1 participants completed a 1-minute lunge test and stroop test pre and post fatigue inducing fencing protocol. A 30 second electroencephalography (EEG) recording was taken pre-protocol participants were instructed stay in a seated stationary position with their eyes closed. Heart rate and ratings of perceived exertion were recorded following each fight during the fatiguing protocol. Participants mouth rinsed (10 seconds) either 25ml of a 6.7% maltodextrin solution (CHO) or 25ml of water (placebo) between fights and during the EEG recording. Blood lactate and glucose measurements were taken at baseline, pre and post protocol. All measurements and tests were repeated during a 2nd visit to the laboratory, except participants were given a different solution to mouth rinse, separated by a minimum of 5 days. The results showed an increase in heart rate (P < 0.05) and overall RPE (P < 0.001) over time in both trials. There were no recorded differences in blood glucose (F(1,8) = 0.634, P = 0.4, ηp 0.07) or blood lactate levels (F(1,8) = 0.123, P = 0.7, ηp 0.01) between trials. There was a significant improvement in lunge test accuracy in the CHO trial (F(1,8) = 5.214, P = 0.05, ηp 0.40). However, there was no recorded difference in response time to congruent (F(1,8) = 0.326, P = 0.58, ηp 0.04) or incongruent (F(1,8) = 0.189, P = 0.68, ηp 0.02) stimuli between trials. In conclusion mouth rinsing a CHO solution significantly improves accuracy of skill-specific fencing performance but does not affect cognitive function following a fatigue inducing fencing protocol in epee fencers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigated the impact that mouth rinsing carbohydrate solution has on skill-specific performance and reaction time following a fatigue inducing bout of fencing in epee fencers. Nine healthy, national level epee fencers visited a laboratory on 2 occasions, separated by a minimum of 5 days, to complete a 1-minute lunge test and Stroop test pre and post fatigue. Heart rate and ratings of perceived exertion (RPE) were recorded during completion of the fatiguing protocol. Between fights the participants mouth rinsed for 10 seconds, either 25ml of 6.7% maltodextrin solution (MALT) or water (PLAC). Blood lactate and glucose were recorded at baseline, pre- and post-testing. Results showed an increase in heart rate and overall RPE over time in both conditions. There were no differences in blood glucose (F(1,8)=.63, P=.4, ηp=.07) or blood lactate levels (F(1,8)=.12, P=.70, ηp=.01) between conditions as a function of time. There was a significant improvement in lunge test accuracy during the MALT trial (F(1,8)=5.21, P=.05, ηp=.40) with an increase from pre (81.2 ±8.3%) to post (87.6 ±9.4%), whereas there was no significant change during the placebo (pre 82.1 ±8.8%, post 78.8 ±6.4%). There were no recorded differences between conditions in response time to congruent (F(1,8)=.33, P=.58, ηp=.04) or incongruent stimuli (F(1,8)=.19, P=.68, ηp=.02). The study indicates that when fatigued mouth rinsing MALT significantly improves accuracy of skill-specific fencing performance but no corresponding influence on reaction time was observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose - In this study we aim to validate a method to assess the impact of reduced visual function and observer performance concurrently with a nodule detection task. Materials and methods - Three consultant radiologists completed a nodule detection task under three conditions: without visual defocus (0.00 Dioptres; D), and with two different magnitudes of visual defocus (−1.00 D and −2.00 D). Defocus was applied with lenses and visual function was assessed prior to each image evaluation. Observers evaluated the same cases on each occasion; this comprised of 50 abnormal cases containing 1–4 simulated nodules (5, 8, 10 and 12 mm spherical diameter, 100 HU) placed within a phantom, and 25 normal cases (images containing no nodules). Data was collected under the free-response paradigm and analysed using Rjafroc. A difference in nodule detection performance would be considered significant at p < 0.05. Results - All observers had acceptable visual function prior to beginning the nodule detection task. Visual acuity was reduced to an unacceptable level for two observers when defocussed to −1.00 D and for one observer when defocussed to −2.00 D. Stereoacuity was unacceptable for one observer when defocussed to −2.00 D. Despite unsatisfactory visual function in the presence of defocus we were unable to find a statistically significant difference in nodule detection performance (F(2,4) = 3.55, p = 0.130). Conclusion - A method to assess visual function and observer performance is proposed. In this pilot evaluation we were unable to detect any difference in nodule detection performance when using lenses to reduce visual function.