952 resultados para removal of caveat
Resumo:
The conjugation of ubiquitin as either a monomer or as a chain has long been known to regulate the stability, localisation, trafficking and/or function of many intracellular proteins. However, the recent explosion in our knowledge of the enzymes responsible for the removal of ubiquitin suggests they also play an important role in the regulation of many processes. Here we examine what is known about the role of deubiquitinating enzymes (DUBs), with particular emphasis upon their impact on cellular responses to external stimuli. In addition, we look at the evidence that although these enzymes are heavily outnumbered by those responsible for ubiquitin conjugation, that these enzymes may still be important cellular regulators, due to their ability to play multiple roles which can be cell type and cell context specific.
Resumo:
Subsistence farming communities with low socio-economic status reliant on a mono cereal maize diet are exposed to fumonisin levels that exceed the provisional maximum tolerable daily intake of 2 mu g kg(-1) body weight day(-1) recommended by the Joint FAO/WHO Expert Committee on Food Additives. In the rural Centane magisterial district, Eastern Cape Province, South Africa, it is customary during food preparation to sort visibly infected maize kernels from good maize kernels and to wash the good kernels prior to cooking. However, this customary practice seems not to sufficiently reduce the fumonisin levels. This is the first study to optimise the reduction of fumonisin mycotoxins in home-grown maize based on customary methods of a rural population, under laboratory-controlled conditions. Maize obtained from subsistence farmers was analysed for the major naturally occurring fumonisins (FB1, FB2 and FB3) by fluorescence HPLC. Large variations were observed in the unsorted and the experimental maize batches attributable to the non-homogeneous distribution of fumonisin contamination in maize kernels. Optimised hand-sorting of maize kernels by removing the visibly infected/damaged kernels (fumonisins, 53.7 +/- 15.0 mg kg(-1), 2.5% by weight) reduced the mean fumonisins from 2.32 +/- 1.16 mg kg(-1) to 0.68 +/- 0.42 mg kg(-1). Hand washing of the sorted good maize kernels for a period of 10 min at 25 degrees C resulted in optimal reduction with no additional improvement for wash periods up to 15 h. The laboratory optimised sorting reduced the fumonisins by 71 +/- 18% and an additional 13 +/- 12% with the 10 min wash. Based on these results and on local practices and practicalities the protocol that would be recommended to subsistence farmers consists of the removal of the infected/damaged kernels from the maize followed by a 10 min ambient temperature water wash. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
PURPOSE: To report the use of perfluorohexyloctane, a liquid semifluorinated alkane that is heavier than water, as an internal tamponade agent in surgery for complicated retinal detachments. DESIGN: A consecutive interventional case series from three study centers. METHODS: In 23 consecutive eyes (23 patients, 19 men and four women, mean ± standard deviation (SD) age of 58.5 years ± 16.1) perfluorohexyloctane was used for long-term internal tamponade. Included were eyes with complicated retinal detachment involving the lower two quadrants of the fundus. Excluded were patients with diseases in the fellow eye or severe systemic disease. A pars plana vitrectomy was performed, including membrane peeling and retinotomy where necessary. RESULTS: The mean duration for perfluorohexyloctane being left in situ was 76 days (SD 37.64) (range, 35-202 days). Four weeks following the removal of perfluorohexyloctane 19 of the 23 patients had total reattachment of the retina; three eyes had a recurrence of retinal detachment. One patient was lost to follow-up. The mean follow-up after perfluorohexyloctane removal was 97 days (range, 48 to 169 days). Cataract formation or progression was noted in nine of the 10 eyes. There were two cases with high intraocular pressures. Dispersion into small droplets was observed as early as 3 days postoperatively in three of the 23 patients. At least 12 of the 23 patients had an obvious dispersion by the time of perfluorohexyloctane removal. There was no sign of optic atrophy, retinal necrosis, or retinal vascular occlusion. CONCLUSION: Perfluorohexyloctane was tolerated as a long-term internal tamponade agent without obvious signs of damage to the retina or optic disk. Of all the complications noted, the most common was that of dispersion of the perfluorohexyloctane bubble into droplets. © 2002 by Elsevier Science Inc. All rights reserved.
Resumo:
The H-2-assisted hydrocarbon selective catalytic reduction (HC-SCR) of NO, was investigated using fast transient kinetic analysis coupled with isotopically labelled (NO)-N-15. This allowed monitoring of the evolution of products and reactants during switches of H-2 in and out of the SCR reaction mix. The results obtained with a time resolution of less than 1 s showed that the effect on the reaction of the removal or addition of H-2 was essentially instantaneous. This is consistent with the view that H-2 has a direct chemical effect on the reaction mechanism rather than a secondary one through the formation of "active" Ag clusters. The effect of H-2 partial pressure was investigated at 245 degrees C, it was found that increasing partial pressure of H-2 resulted in increasing conversion of NO and octane. It was also found that the addition of H-2 at 245 degrees C had different effects on the product distribution depending on its partial pressure. The change of the nitrogen balance over time during switches in and out of hydrogen showed that significant quantities of N-containing species were stored when hydrogen was introduced to the system. The positive nitrogen balance on removal of H-2 from the gas phase showed that these stored species continued to react after removal of hydrogen to form N-2. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
The role of hydrogen in promoting the reduction by ammonia of NOx on silver catalysts has been investigated using a Short Time on Stream (STOS) technique to allow differentiation between potentially reactive intermediates and relatively inactive spectator species. Under these conditions, we have used DRIFTS to identify surface nitrate species that are formed and removed on a timescale of seconds. This is in contrast to nitrate species observed under normal steady-state conditions which can continue to form over many tens of minutes. Since this timescale of seconds is very similar to the response rate at which the NH3/NOx to N-2 reaction is accelerated when H-2 is added, or decelerated when H-2 is removed, we conclude that this fast-forming and fast disappearing nitrate species is most probably adsorbed on or close to the active Ag sites. The removal of such a blocking nitrate species from the active sites can explain the effect of H-2 in greatly increasing the rate of the overall de-NOx reaction.
Resumo:
Although the antimicrobial activity of atmospheric pressure non-thermal plasmas, including its capacity to eradicate microbial biofilms, has been gaining an ever increasing interest for different medical applications, its potential utilisation in the control of biofouling and biodeterioration has, to date, received no attention. In this study, the ability of atmospheric pressure plasma to eradicate biofilms of four biofouling bacterial species, frequently encountered in marine environments, was investigated. Biofilms were grown on both polystyrene and stainless steel surfaces before being exposed to the plasma source. Viability and biomass of biofilms were evaluated using colony count method and differential Live/Dead fluorescence staining followed by confocal laser scanning microscopy. Rapid and complete eradication of all biofilms under study was achieved after plasma exposures ranging from 60 to 120 s. Confocal microscopy examination showed that plasma treatment has mediated not only cell killing but also varying degrees of physical removal of biofilms. Further investigation and tailored development of atmospheric pressure non-thermal plasma sources for this particular application could provide an additional powerful and effective weapon in the current anti-biofouling armamentarium.
Resumo:
Adult and 3-week-old juvenile Fasciola hepatica were examined for the presence of the cytoskeletal protein actin. Techniques of direct fluorescence using fluorescein isothiocyanate (FITC)-phalloidin and of indirect immunofluorescence using a monoclonal anti-actin antibody (MAA) demonstrated actin in the testes, sub-tegumental and gut musculature, tegumental cell bodies and tegumental spines. In contrast, polyclonal anti-actin antibody (PAA) revealed immunostaining only in the vitellaria. Effective removal of the tegument with 1% (w/v) sodium dodecyl sulphate (SDS) was confirmed by scanning electron microscopy (SEM), and this enabled immunoblotting of whole fluke and tegumental fractions with and without spines. Whole fluke fractions produced three bands corresponding to molecules exhibiting relative molecular weights of 43, 28 and 15 kDa, respectively, whereas the tegumental fraction with spines revealed a single band corresponding to 15 kDa in size. The fraction without spines displayed no bands. The present study localised actin in a number of different tissue types within the liver fluke. Using MAA, three forms of actin have been identified in the whole fluke and a single one in the tegumental spines.
Resumo:
The impact of power fluctuations arising from fixed-speed wind turbines on the magnitude and frequency of inter-area oscillations has been investigated. The authors introduced data acquisition equipment to record the power flow on the interconnector between the Northern Ireland and Republic of Ireland systems. Through monitoring the interconnector oscillation using a fast Fourier transform, it was possible to determine the magnitude and frequency of the inter-area oscillation between the two systems. The impact of tower shadow on the output power from a wind farm was analysed using data recorded on site. A case study investigates the effect on the system of the removal of a large fixed-speed wind farm. Conclusions are drawn on the impact that conventional generation and the output from fixed-speed wind farms have on the stability of the Irish power system.
Resumo:
Apoptotic protease activating factor-1 (Apaf-1) has been identified as a proximal activator of caspase-9 in cell death pathways that trigger mitochondrial damage and cytochrome c release. The mechanism of Apaf-1 action is unclear but has been proposed to involve the clustering of caspase-9 molecules, thereby facilitating autoprocessing of adjacent zymogens. Here we show that Apaf-1 can dimerize via the CED-4 homologous and linker domains of the molecule providing a means by which Apaf-1 can promote the clustering of caspase-9 and facilitate its activation. Apaf-1 dimerization was repressed by the C-terminal half of the molecule, which contains multiple WD-40 repeats, but this repression was overcome in the presence of cytochrome c and dATP. Removal of the WD-40 repeat region resulted in a constitutively active Apaf-1 that exhibited greater cytotoxicity in transient transfection assays when compared with full-length Apaf-1. These data suggest a mechanism for Apaf-1 function and reveal an important regulatory role for the WD-40 repeat region.
Resumo:
Electrokinetic process is a potential in situ soil remediation process which transports the contaminants via electromigration and electroosmosis. For organic compounds contaminated soil, Fenton’s reagent is utilized as a flushing agent in electrokinetic process (Electrokinetic-Fenton) so that removal of organic contaminants could be achieved by in situ oxidation/destruction. However, this process is not applied widely in industries as the stability issue for Fenton’s reagent is the main drawback. The aim of this mini review is to summarize the developments of Electrokinetic-Fenton process on enhancing the stability of Fenton’s reagent and process efficiency in past decades. Generally, the enhancements are conducted via four paths: (1) chemical stabilization to delay H2O2 decomposition, (2) increase of oxidant availability by monitoring injection method for Fenton’s reagent, (3) electrodes operation and iron catalysts and (4) operating conditions such as voltage gradient, electrolytes and H2O2 concentration. In addition, the types of soils and contaminants are also showing significant effect as the soil with low acid buffering capacity, adequate iron concentration, low organic matter content and low aromatic ring organic contaminants generally gives better efficiency.
Resumo:
Atmospheric pressure nonthermal-plasma-activated catalysis for the removal of NOx using hydrocarbon selective catalytic reduction has been studied utilizing toluene and n-octane as the hydrocarbon reductant. When the plasma was combined with a Ag/Al2O3 catalyst, a strong enhancement in activity was observed when compared with conventional thermal activation with high conversions of both. NOx and hydrocarbons obtained at temperature at temperature ≤250 °C, where the silver catalyst is normally inactive. Importantly, even in the absence of an external heat source, significant activity was obtained. This low temperature activity provides the basis for applying nonthermal plasmas to activate emission control catalysts during cold start conditions, which remains an important issue for mobile and stationary applications.
Resumo:
We report on a low-damage method for direct and rapid fabrication of arrays of epitaxial BiFeO3(BFO) nanoislands. An array of aluminium dots is evaporated through a stencil mask on top of an epitaxial BiFeO3 thin film. Low energy focused ion beam milling of an area several microns wide containing the array-covered film leads to removal of the bismuth ferrite in between the aluminium-masked dots. By chemical etching of the remaining aluminium, nanoscale epitaxial bismuth ferrite islands with diameter ∼250 nm were obtained. Piezoresponse force microscopy showed that as-fabricated structures exhibited good piezoelectric and ferroelectric properties, with polarization state retention of several days.
Resumo:
This work presents the possibility of optimising 3D Organised Mesoporous Silica (OMS) coated with both iron and aluminium oxides for the optimal removal of As(III) and As(V) from synthetic contaminated water. The materials developed were fully characterised and were tested for removing arsenic in batch experiments. The effect of total Al to Fe oxides coating on the selective removal of As(III) and As(V) was studied. It was shown that 8% metal coating was the optimal configuration for the coated OMS materials in removing arsenic. The effect of arsenic initial concentration and pH, kinetics and diffusion mechanisms was studied, modelled and discussed. It was shown that the advantage of an organised material over an un-structured sorbent was very limited in terms of kinetic and diffusion under the experimental conditions. It was shown that physisorption was the main adsorption process involved in As removal by the coated OMS. Maximum adsorption capacity of 55 mg As(V).g-1 was noticed at pH 5 for material coated with 8% Al oxides while 35 mg As(V).g-1 was removed at pH 4 for equivalent material coated with Fe oxides.
Resumo:
The consequences of biodiversity loss in the face of environmental change remain difficult to predict, given the complexity of interactions among species and the context-dependency of their functional roles within ecosystems. Predictions may be enhanced by studies testing how the interactive effects of species loss from different functional groups vary with important environmental drivers. On rocky shores, limpets and barnacles are recognised as key grazers and ecosystem engineers, respectively. Despite the large body of research examining the combined effects of limpet and barnacle removal, it is unclear how their relative importance varies according to wave exposure, which is a dominant force structuring intertidal communities. We tested the responses of algal communities to the removal of limpets and barnacles on three sheltered and three wave-exposed rocky shores on the north coast of Ireland. Limpet removal resulted in a relative increase in microalgal biomass on a single sheltered shore only, but led to the enhanced accumulation of ephemeral macroalgae on two sheltered shores and one exposed shore. On average, independently of wave exposure or shore, ephemeral macroalgae increased in response to limpet removal, but only when barnacles were removed. On two sheltered shores and one exposed shore, however, barnacles facilitated the establishment of fucoid macroalgae following limpet removal. Therefore, at the scale of this study, variability among individual shores was more important than wave exposure per se in determining the effect of limpet removal and its interaction with that of barnacles. Overall, these findings demonstrate that the interactive effects of losing key species from different functional groups may not vary predictably according to dominant environmental factors.
Resumo:
Aqueous core/polymer shell microcapsules with mommuclear and polynuclear core morphologies have been formed by internal phase separation from water-in-oil emulsions. The water-in-oil emulsions were prepared with the shell polymer dissolved in the aqueous phase by adding a low boiling point cosolvent. Subsequent removal of this cosolvent (by evaporation) leads to phase separation of the polymer and, if the spreading conditions are correct, formation of a polymer shell encapsulating the aqueous core. Poly(tetrahydrofuran) (PTHF) shell/aqueous core microcapsules, with a single (mononuclear) core, have been prepared, but the low T-g (-84 degreesC) of PTHF makes characterization of the particles more difficult. Poly(methyl methacrylate) and poly(isobutyl methacrylate) have higher T-g values (105 and 55 degreesC, respectively) and can be dissolved in water at sufficiently high acetone concentrations, but evaporation of the acetone from the emulsion droplets in these cases mostly resulted in polynuclear capsules, that is, having cores with many very small water droplets contained within the polymer matrix. Microcapsules with fewer, larger aqueous droplets in the core could be produced by reducing the rate of evaporation of the acetone. A possible mechanism for the formation of these polynuclear cores is suggested. These microcapsules were prepared dispersed in an oil-continuous phase. They could, however, be successfully transferred to a water-continuous phase, using a simple centrifugation technique. In this way, microcapsules with aqueous cores, dispersed in an aqueous medium, could be made. It would appear that a real challenge with the water-core systems, compared to the previous oil-core systems, is to obtain the correct order of magnitude of the three interfacial tensions, between the polymer, the aqueous phase, and the continuous oil phase; these control the spreading conditions necessary to produce shells rather than "acorns".