999 resultados para reforma de acetona acetona
Resumo:
Heparin is a pharmaceutical animal widely used in medicine due to its potent anticoagulant effect. Furthermore, it has the ability to inhibit the proliferation, invasion and adhesion of cancer cells to vascular endothelium. However, its clinical applicability can be compromised by side effects such as bleeding. Thus, the search for natural compounds with low bleeding risk and possible therapeutic applicability has been targeted by several research groups. From this perspective, this study aims to evaluate the hemorrhagic and anticoagulant activities and citotoxic effect for different tumor cell lines (HeLa, B16-F10, HepG2, HS-5,) and fibroblast cells (3T3) of the Heparin-like from the crab Chaceon fenneri (HEP-like). The HEP-like was purified after proteolysis, ion-exchange chromatography, fractionation with acetone and characterized by electrophoresis (agarose gel) and enzymatic degradation. Hep-like showed eletroforetic behavior similar to mammalian heparin, and high trisulfated /Nacetylated disaccharides ratio. In addition, HEP-like presented low in vitro anticoagulant activity using aPTT and a minor hemorrhagic effect when compared to mammalian heparin. Furthermore, the HEP-like showed significant cytotoxic effect (p<0.001) on HeLa, HepG2 and B16-F10 tumor cells with IC50 values of 1000 ug/mL, after incubation for 72 hours. To assess the influence of heparin-like on the cell cycle in HeLa cells, analysis was performed by flow cytometry. The results of this analysis showed that HEP-like influence on the cell cycle increasing S phase and decreasing phase G2. Thus, these properties of HEP-like make these compounds potential therapeutic agents
Resumo:
This study examines the physical and chemical composition and the pharmacological effects of brown seaweed FRF 0.8 Lobophora variegata. Fractionation of the crude extract was done with the concentration of 0.8 volumes of acetone, obtaining the FRF 0.8. The physicochemical characterization showed that it was a fucana sulfated. Anti-inflammatory activity was assessed by paw edema model by the high rates of inhibition of the edema and the best results were in the fourth hour after induction (100 ± 1.4% at the dose of 75 mg / kg) and by the strong inhibitory activity of the enzyme myeloperoxidase (91.45% at the dose of 25 mg / kg). The hepataproteção was demonstrated by measurements of enzymatic and metabolic parameters indicative of liver damage, such as bilirubin (reduction in 68.81%, 70.68% and 68.21% for bilirubin total, direct and indirect, respectively at a dose of 75 mg / kg), ALT, AST and γ-GT (decrease of 76.93%, 44.58% and 50% respectively at a dose of 75 mg / kg) by analysis of histological slides of liver tissue, confirming that hepatoprotective effect the polymers of carbohydrates, showing a reduction in tissue damage caused by CCl4 and the inhibition of the enzyme complex of cytochrome P 450 (increasing sleep time in 54.6% and reducing the latency time in 71.43%). The effectiveness of the FRF 0.8 angiogenesis was examined in chorioallantoic membrane (CAM) of fertilized eggs, with the density of capillaries evaluated and scored, showing an effect proangigênico at all concentrations tested FRF (10 mg- 1000 mg). The FRF showed antioxidant activity on free radicals (by inhibiting Superoxide Radical in 55.62 ± 2.10%, Lipid Peroxidation in 100.15 ± 0.01%, Hydroxyl Radical in 41.84 ± 0.001% and 71.47 Peroxide in ± 2.69% at concentration of 0.62 mg / mL). The anticoagulant activity was observed with prolongation of activated partial thromboplastin time (aPTT) at 50 mg (> 240 s), showing that its action occurs in the intrinsic pathway of the coagulation cascade. Thus, our results indicate that these sulfated polysaccharides are an important pharmacological target
Resumo:
Lectin obtained from the marine sponge Tedania ignis was purified and characterized by extraction of soluble proteins (crude extract) in 50mM Borax, pH 7.5. The purification procedure was carried out by crude extract precipitation with ammonium sulfate 30% (FI). The precipitated was resuspended in the same buffer and fractionated with acetone 1.0 volume (F1.0). A lectin was purified from this specific fraction by using an affinity chromatography Sepharose 6B. This lectin preferentially agglutinated human erythrocytes from B type previously treated with papain enzyme. The hemagglutinating activity lectin was dependent of divalent Mn2+ cation and was inhibited by the carbohydrates galactose, xylose and fructose. SDS-PAGE analysis indicated a molecular mass of the lectin around 45 kDa. This protein showed stability until 40°C for 1 h. Further, it showed activity between pH 2.5 and 11.5, with an enhanced activity at pH 7.5. Leishmania chagasi promastigotes stained with Coomassie brilliant blue R-250 were agglutinated by F1,0 and in the presence of galactose this interaction was abolished. These results show that this lectin could be implicated in defense procedures and it will can be used as biological tools in studies with this protozoon
Resumo:
Fucans are a family of sulfated homo and teropolysaccharides respectively, composed mainly of a- (1®2) and a- (1®3) linked by L-fucose residues. Properties such as the ability to act as an anti-contraceptive, to reduce cholesterol levels, and to act as an anti-tumor agent are much related. We have focused our attention on the anticoagulant properties, platelet aggregation, hemorrhagic activity and complement system in vitro of commercial fucoidan (F) and their purified fractions (F1, F2 and F3) from Fucus vesiculosus obtained from fractionation of the fucoidan with different concentrations of acetone 1, 2 and 3v. These compounds were chemically characterized and the fucoidan (F) was modified by desulfation. The anticoagulant activity of the compounds was assessment by activated partial thromboplastin time (APTT) and prothrombine time assay (PT) using citrated normal human plasma. The results of APPT test showed that F, F1 and F2 have high anticoagulants activities 240.0 s (5 µg). The F3 showed 73.7 s in the same concentrations. The results obtained with PT test to F, F1, F2 and F3 were 81.5 s, 120.0 s, 57.1 and 32.5 s respectively with 50 µg. The dessulfated polymer showed a decrease in the anticoagulant activity in these two tests. Platelet aggregation assay was measured turbidimetrically with platelet aggregometer by method of Born. The aggregation platelet with F and fractions F1, F2 and F3 exhibited a two-phase answer in the concentration of 5 mg/mL with maximum aggregation of 76.36 ± 10.3% ; 69.54 ± 9.40%; 75.94 ± 9.01%; 51.13 ± 9.59% respectively. However, was observed a hipoaggregate profile F (15.17 ± 5.2%), F1 (7.40 ± 3.04 %), F2 (19.1 ± 5.41%) and F3 (5.09 ± 3.02%) at 0.1 mg/mL. The hemorrhagic activity assay was carried in Wistar rats and showed that these compounds have low hemorrhagic effect when compared to heparin. The complement system ( alternative pathway was made using non-sensibilized rabbit red blood cells The results of complement system essay showed that F , F2 and F3 have action inhibitory in relation to the group control 0.544, 0.697, 0.622 and 0.958 respectively The results showed that these compounds have action on this system. Interaction of the polisaccharides with proteins C3 and C4 showed that the fraction F1 stimulated the activity assay hemolytic using red blood cells
Resumo:
Sulfated Polysaccharides with unique chemical structures and important biological activities has been found in a diversity of sea invertebrates. For that, to exist a huger interest on the biotechnology field in the research theses sulfated compounds isolated from sea organisms. Despite the privileged brazilian position for these compounds attainment, there are still a few scientific informations about the isolated substances and their biological activities. A head the displayed, the present work has for objectives, to evaluate the pharmacological properties of the glycosaminoglycans isolated from the sea shrimp Litopenaeus schimitti on homeostasis, blood coagulation, leukocytes migration and platelet/leukocyte adhesion. For this, yhe glycosaminoglycans were extracted from crustacean tissues by proteolysis, fractionation with acetone and later submitted to pharmacological assays. The crustacean tissues showed compounds heparin-like, with anticoagulant activity of 45 IU/mg and 90 IU/mg, respectively. These molecules showed low residual hemorrhagic effects in the tested concentration (100 µg/mL), when compared to unfractionated commercial heparin (UFH). Another dermatan sulfate-like compound, predominately constituted for disulfated disaccharides, was isolated from crustacean abdomen. This compound showed an efficient effect on leukocytes migration inhibition, in the concentration of 15 µg/mL, reducing the cellular infiltration in 65% when compared to the controlled animals. In this same concentration, the DS reduced in 60% the protein concentration of the peritoneal exudates. In the concentration, this compound of 0.5 mg/mL, it was capable to reduce in 40% platelet/leukocytes adhesion. Our data demonstrate that these sulfated polysaccharides isolated from the shrimp L. schimitti will can be used as bioactive compounds, appearing as active principles for pharmacological development, anticoagulants and inflammatory response regulators
Resumo:
Sulfated polysaccharides comprise a complex group of macromolecules with a range of several biological activities, including antiviral activity, anticoagulant, antiproliferative, antiherpética, antitumor, anti-inflammatory and antioxidant. These anionic polymers are widely distributed in tissues of vertebrates, invertebrates and algae. Seaweeds are the most abundant sources of sulfated polysaccharides in nature. The green algal sulfated polysaccharides are homo or heteropolysaccharides comprised of galactose, glucose, arabinose and/or glucuronic acid. They are described as anticoagulant, anti-inflammatory, antiviral, anti-angiogenic, antitumor compounds. However, there are few studies about elucidation and evaluation of biological/pharmacological effects of sulfated polysaccharides obtained from green algae, for example, there is only one paper reporting the antinociceptive activity of sulfated polysaccharides of these algae. Therefore this study aimed to obtain sulfated polysaccharides of green seaweed Codium isthmocladum and evaluates them as potential antinociceptive agents. Thus, in this study, the total extract of polysaccharides of green alga C. isthmocladum was obtained by proteolytic digestion, followed by fractionation resulting in five fractions (F0.3, F0.5, F0.7, F0.9 and F1.2) by sequential precipitation with acetone. Using the test of abdominal contractions we observed that the fraction F0.9 was the most potent antinociceptive aompound. F0.9 consists mainly of a sulfated heterogalactana. More specific tests showed that Fo.9 effect is dose and time dependent, reaching a maximum at 90 after administration (10 mg / kg of animal). F0.9 is associated with TRPV1 and TRPA1 receptors and inhibits painful sensation in animals. Furthermore, F0.9 inhibits the migration of lymphocytes induced peritonitis test. On the other hand, stimulates the release of NO and TNF-α. These results suggest that F0.9 has the potential to be used as a source of sulfated galactan antinociceptive and anti-inflammatory
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
The fucoidan from Fucus vesiculosus is known for having diverse biological properties. This study analyzed the therapeutic action of populations of commercial fucoidan (F. vesiculosus) on zymosan-induced arthritis. Three populations of fucoidan were obtained after acetone fractionation; these were denominated F1 (52.3%), F2 (36.7%) and F3 (10.7%). Chemical analyses showed that F1 contained the largest amount of sulfate ion. The electrophoretic profile shows that the commercial or total fucoidan (TF), different from the other fucoidans and from glycosaminoglycan patterns, is quite polydisperse, which indicates that it is composed of a mixture of sulfate polysaccharides. On the other hand, the fucoidans obtained from TF showed only an electrophoretic band with much lower polydispersion than that observed for TF. Fucoidan F2 showed a migration between fucoidans F1 and F3. Owing to the small amount of mass obtained from F3, we used only fucoidans F1 and F2 in the induced arthritis tests. After 1 hour of induction, we administered F1 or F2 (10, 25 and 50 mg/kg i.p.) or diclofenac sodium (10 mg/kg i.p.) or lumiracoxib (5 mg/kg o.a.) or L-NAME (30 mg/kg i.p.). After 6 hours, we performed analyses of cell influx and nitrite levels in addition to histopathological analysis. Fucoidans F1 and F2 were more potent both in decreasing the number of leukocytes and the amount of nitric oxide found in the synovial fluid. This indicates that the anti-inflammatory mechanism of these fucoidans is not only related to selectin block, but also to nitric oxide synthesis inhibition
Resumo:
Ionic oxides with ABO3 structure, where A represents a rare earth element or an alkaline metal and B is a transition metal from group VIII of the periodic table are potential catalysts for oxidation and good candidates for steam reforming reaction. Different methods have been considered for the synthesis of the oxide materials with perovskite structure to produce a high homogeneous material with low amount of impurities and low calcination temperatures. In the current work, oxides with the LaNiO3 formula had been synthesized using the method of the polymeric precursors. The thermal treatment of the materials took place at 300 ºC for 2h. The material supported in alumina and/or zirconia was calcined at 800 ºC temperature for 4h. The samples had been characterized by the following techniques: thermogravimetry; infrared spectroscopy; X-ray diffraction; specific surface area; distribution of particle size; scanning electron microscopy and thermo-programmed reduction. The steam reforming reaction was carried out in a pilot plant using reducing atmosphere in the reactor with a mixture of 10% H2-Argon, a mass about 5g of catalyst, flowing at 50 mL.min-1. The temperature range used was 50 - 1000 oC with a heating rate of 10 oC.min-1. A thermal conductivity detector was used to analyze the gas after the water trapping, in order to permit to quantify the consumption of hydrogen for the lanthanum nickelates (LaNiO3). The results showed that lanthanum nickelate were more efficient when supported in alumina than when supported in zirconia. It was observed that the methane conversion was approximately 100% and the selectivity to hydrogen was about 70%. In all cases were verified low selectivity to CO and CO2
Resumo:
Sugar esters are substances which possess surfactant, antifungical and bactericidal actions and can be obtained through two renewable sources of raw materials: sugars and vegetable oils. Their excellent biodegradability, allied to lhe fact that they are non toxic, insipid, inodorous, biocompatible, no-ionic, digestible and because they can resist to adverse conditions of temperature, pH and salinity, explain lhe crescent use of these substances in several sections of lhe industry. The objective of this thesis was to synthesize and characterize surfactants and polymers containing sugar branched in their structures, through enzymatic transesterification of vinyl esters and sugars, using alkaline protease from Bacillus subtilis as catalyst, in organic medium (DMF).Three types of sugars were used: L-arabinose, D-glucose and sucrose and two types of vinyl esters: vinyl laurate and vinyl adipate. Aiming to reach high conversions from substrates to products for a possible future large scale industrial production, a serie of variables was optimized, through Design of Experiments (DOE), using Response Surface Methodology (RSM).The investigated variables were: (1) enzyme concentration; (2) molar reason of substrates; (3) water/solvent rale; (4) temperature and (5) time. We obtained six distinct sugar esters: 5-0-lauroyl L-arabinose, 6-0-lauroyl D-glucose, 1'-O-lauroyl sucrose, 5-0-vinyladipoyl L-arabinose, 6-0-vinyladipoyl D-glucose and 1 '-O-vinyladipoyl sucrose, being lhe last three polymerizable. The progress of lhe reaction was monitored by HPLC analysis, through lhe decrease of sugar concentration in comparison to lhe blank. Qualitative analysis by TLC confirmed lhe formation of lhe products. In lhe purification step, two methodologies were adopted: (1) chromatographic column and (2) extraction with hot acetone. The acylation position and lhe chemical structure were determined by 13C-RMN. The polymerization of lhe three vinyl sugar esters was possible, through chemical catalysis, using H2O2 and K2S2O8 as initiators, at 60°C, for 24 hours. IR spectra of lhe monomers and respective polymers were compared revealing lhe disappearance of lhe vinyl group in lhe polymer spectra. The molar weights of lhe polymers were determined by GPC and presented lhe following results: poly (5-0-vinyladipoyl L-arabinose): Mw = 7.2 X 104; PD = 2.48; poly (6-0-vinyladipoyl D-glucose): Mw = 2.7 X 103; PD = 1.75 and poly (1'-O-vinyladipoyl sucrose): Mw = 4.2 X 104; PD = 6.57. The six sugar esters were submitted to superficial tension tests for determination of the critical micelle concentrations (CMC), which varied from 122 to 167 ppm. Finally, a study of applicability of these sugar esters, as lubricants for completion fluids of petroleum wells was' accomplished through comparative analysis of lhe efficiency of these sugar esters, in relation to three commercial lubricants. The products synthesized in this thesis presented equivalent or superior action to lhe tested commercial products
Resumo:
The production of synthesis gas has received renewed attention due to demand for renewable energies to reduce the emissions of gases responsible for enhanced greenhouse effect. This work was carried out in order to synthesize, characterize and evaluate the implementation of nickel catalysts on MCM-41 in dry reforming reactions of methane. The mesoporous molecular sieves were synthesized using as silica sources the tetraethyl orthosilicate (TEOS) and residual glass powder (PV). The sieves were impregnated with 10% nickel to obtain the metallic catalysts (Ni/MCM-41). These materials were calcined and characterized by Thermogravimetric Analysis (TG), Infrared spectroscopy (FTIR), X-ray Diffraction (XRD), Temperature-Programmed Reduction (TPR) and N2 Adsorption/Desorption isotherms (BET/BJH). The catalytic properties of the samples were evaluated in methane dry reforming with CO2 in order to produce synthesis gas to be used in the petrochemical industry. The materials characterized showed hexagonal structure characteristic of mesoporous material MCM-41 type, being maintained after impregnation with nickel. The samples presented variations in the specific surface area, average volume and diameter of pores based on the type of interaction between the nickel and the mesoporous support. The result of the the catalytic tests showed conversions about 91% CO2, 86% CH4, yelds about 85% CO and 81% H2 to Ni/MCM-41_TEOS_C, and conversions about 87% CO2, 82% CH4, yelds about 70% CO and 59% H2 to Ni/MCM-41_PV_C. The similar performance confirms that the TEOS can be replaced by a less noble materials
Resumo:
A galactose and sucrose specific lectin from the marine sponge Cliona varians named CvL was purified by acetone fractionation followed by Sepharose CL 4B affinity chromatography. Models of leukocyte migration in vivo were used to study the inflammatory activity of CvL through of mouse paw oedema and peritonitis. Effect of CvL on peritoneal macrophage activation was analyzed. Effects of corticoids and NSAIDS drugs were also evaluated on peritonitis stimulated by CvL. Results showed that mouse hind-paw oedema induced by sub plantar injections of CvL was dependent dose until 50µg/paw. This CvL dose when administered into mouse peritoneal cavities induced maxima cell migration (9283 cells/µL) at 24 hours after injection. This effect was preferentially inhibited by incubation of CvL with the carbohydrates D-galactose followed by sucrose. Pre-treatment of mice with 3% thioglycolate increases the peritoneal macrophage population 2.3 times, and enhanced the neutrophil migration after 24h CvL injection (75.8%, p<0.001) and no significant effect was observed in presence of fMLP. Finally, Pre-treatment of mice with dexamethason (cytokine antagonist) decreased 65.6%, (p<0.001), with diclofenac (non-selective NSAID) decreased 34.5%, (p<0.001) and Celecoxib (selective NSAID) had no effect on leukocyte migration after submission at peritonitis stimulated by CvL, respectively. Summarizing, data suggest that CvL shows pro-inflammatory activity, inducing neutrophil migration probably by pathway on resident macrophage activation and on chemotaxis mediated by cytokines
Resumo:
The acidic galactan (AG) was obtained by extraction and proteolysis by acetone precipitation of the eggs of the mollusc Pomacea lineata. Its structure was elucidated by a combination of chemical analysis, the intrinsic viscosity and NMR spectroscopy 1D and 2D. Biological aspects of AG were evaluated by in vivo testing of healing and peritonitis induced (anti-inflammatory activity) and in vitro assays of cytotoxicity (MTT). This polymer showed a simple structure without the presence of sulfate and uronic acids in its structure. Its intrinsic viscosity and relative were evaluated at 0.44 ± 0.05 and 1.744± 0.07 dl.g-1. Spectroscopy showed that the AG has a constitution composed predominantly of β-D-galactosis, and β-D-glucosamine-NAcetil that comes in a smaller proportion in chain. The character of this acidic polysaccharide is given by the presence of pyruvate in the molecule, forming a cyclic acetal of six states, located in β-D-galactosis. The involvement of AG in the healing process was evaluated and the histological analysis revealed that there was so early in the process of healing, a great stimulation of macrophages with granuloma formation. Suggesting that AG may have promoted the advance of biological events required for tissue healing. In the trial of the GA-induced peritonitis showed dose dependent, demonstrating the anti-inflammatory effect at concentrations above 20 mg/kg, and confirming its inflammatory character and the concentration of 1mg/kg. In vitro tests used in the GA concentration of 1000 μg/mL showed proliferative activity by stimulating the growth of 3T3 cells, corroborating the findings in vivo and demonstrating the absence of cytotoxic activity
Resumo:
In the present study, six families of sulfated polysaccharides were obtained from seaweed Dictyopteris delicatula (Lamouroux, 1809) and their anticoagulant, antioxidant and antitumor activities were evaluated. All fractions showed anticoagulant activity on aPTT assay, but not on PT assay. Fractions also exhibited total antioxidant activity, superoxide radical scavenging capacity and ferric chelating property. Thus, six fractions (F0.5v, F0.7v, F1.0v, F1.3v, F1.5v e F2.0v) we obtained by proteolytic digestion, followed by acetone fractionation and molecular sieving on Sephadex G-100. Chemical analyses demonstrated that all polysaccharides contain heterofucans composed mainly of fucose, xylose, glucose, galactose, uronic acid, and sulfate. Any fractions changed the PT. However, all fractions were able on double the aPPT on a dose-dependent manner. The heterofucans F0.7v and F1.0v showed low anticoagulant activity while F1.5v presented the most prominent anticoagulant activity .When compared to Clexane®, a low molecular weight heparin, at same concentration F1.5v presented similar anticoagulant activity. The fucans F0.5v and F0.7v at 1.0 mg/mL showed high ferric chelating activity (~45%), whereas fucans F1.3v (0.5 mg/mL) showed considerable reducing power, about 53.2% of the activity of vitamin C. The fucan F1.5v presented the most prominent anticoagulant activity. The best antiproliferative activity was found with fucans F1.3v and F0.7v. However, F1.3v activity was much higher than F0.7v inhibiting almost 100% of HeLa cell proliferation. These fucans have been selected for further studies on structural characterization as well as in vivo experiments, which are already in progress
Resumo:
The ethanol is the most overused psychoactive drug over the world; this fact makes it one of the main substances required in toxicological exams nowadays. The development of an analytical method, adaptation or implementation of a method known, involves a process of validation that estimates its efficiency in the laboratory routine and credibility of the method. The stability is defined as the ability of the sample of material to keep the initial value of a quantitative measure for a defined period within specific limits when stored under defined conditions. This study aimed to evaluate the method of Gas chromatography and study the stability of ethanol in blood samples, considering the variables time and temperature of storage, and the presence of preservative and, with that check if the conditions of conservation and storage used in this study maintain the quality of the sample and preserve the originally amount of analyte present. Blood samples were collected from 10 volunteers to evaluate the method and to study the stability of ethanol. For the evaluation of the method, part of the samples was added to known concentrations of ethanol. In the study of stability, the other side of the pool of blood was placed in two containers: one containing the preservative sodium fluoride 1% and the anticoagulant heparin and the other only heparin, was added ethanol at a concentration of 0.6 g/L, fractionated in two bottles, one being stored at 4ºC (refrigerator) and another at -20ºC (freezer), the tests were performed on the same day (time zero) and after 1, 3, 7, 14, 30 and 60 days of storage. The assessment found the difference in results during storage in relation to time zero. It used the technique of headspace associated with gas chromatography with the FID and capillary column with stationary phase of polyethylene. The best analysis of chromatographic conditions were: temperature of 50ºC (column), 150ºC (jet) and 250ºC (detector), with retention time for ethanol from 9.107 ± 0.026 and the tercbutanol (internal standard) of 8.170 ± 0.081 minutes, the ethanol being separated properly from acetaldehyde, acetone, methanol and 2-propanol, which are potential interfering in the determination of ethanol. The technique showed linearity in the concentration range of 0.01 and 3.2 g/L (0.8051 x + y = 0.6196; r2 = 0.999). The calibration curve showed the following equation of the line: y = x 0.7542 + 0.6545, with a linear correlation coefficient equal to 0.996. The average recovery was 100.2%, the coefficients of variation of accuracy and inter intra test showed values of up to 7.3%, the limit of detection and quantification was 0.01 g/L and showed coefficient of variation within the allowed. The analytical method evaluated in this study proved to be fast, efficient and practical, given the objective of this work satisfactorily. The study of stability has less than 20% difference in the response obtained under the conditions of storage and stipulated period, compared with the response obtained at time zero and at the significance level of 5%, no statistical difference in the concentration of ethanol was observed between analysis. The results reinforce the reliability of the method of gas chromatography and blood samples in search of ethanol, either in the toxicological, forensic, social or clinic