906 resultados para reactions
Resumo:
Naphthalene and biphenyl dianions are interesting compounds that can be obtained by double reduction of the corresponding arenes in solution with certain alkali metals. These dianions are highly reactive and rather elusive species with very high laying and highly delocalized electrons. They share many aspects of the reactivity of the alkali metal they originated from and consequently behave primarily as strong electron transfer (ET) reagents. We report here kinetic evidence for a different type of reactivity in their alkylation reactions with alkyl fluorides. By using cyclopropylmethyl fluoride (c-C3H5CH2F) as a very fast radical probe, we were able to settle that this alkylation does not involve the classical electron transfer reaction followed by radical coupling between diffusing radicals, but supports the alternative SN2 concerted mechanism, discerning thus this mechanistic SN2-ET dichotomy.
Resumo:
The organocatalytic activities of highly substituted proline esters obtained through asymmetric [3+2] cycloadditions of azomethine ylides derived from glycine iminoesters have been analyzed by 19F NMR and through kinetic isotope effects. Kinetic rate constants have been determined for unnatural proline esters incorporating different substituents. It has been found that exo-L and endo-L unnatural proline methyl esters yield opposite enantiomers in aldol reactions between cyclic ketones and aromatic aldehydes. The combined results reported in this study show subtle and remote effects that determine the organocatalytic behavior of these synthetic but readily available amino acid derivatives. These data can be used as design criteria for the development of new pyrrolidine-based organocatalysts.
Resumo:
Direct nucleophilic substitution reactions of allylic alcohols are environmentally friendly, since they generate only water as a byproduct, allowing access to new allylic compounds. This reaction has, thus, attracted the interest of the chemical community and several strategies have been developed for its successful accomplishment. This review gathers the latest advances in this methodology involving SN1-type reactions.
Resumo:
Purpose: To construct a cluster model or a gene signature for Stevens-Johnson syndrome (SJS) using pathways analysis in order to identify some potential biomarkers that may be used for early detection of SJS and epidermal necrolysis (TEN) manifestations. Methods: Gene expression profiles of GSE12829 were downloaded from Gene Expression Omnibus database. A total of 193 differentially expressed genes (DEGs) were obtained. We applied these genes to geneMANIA database, to remove ambiguous and duplicated genes, and after that, characterized the gene expression profiles using geneMANIA, DAVID, REACTOME, STRING and GENECODIS which are online software and databases. Results: Out of 193 genes, only 91 were used (after removing the ambiguous and duplicated genes) for topological analysis. It was found by geneMANIA database search that majority of these genes were coexpressed yielding 84.63 % co-expression. It was found that ten genes were in Physical interactions comprising almost 14.33 %. There were < 1 % pathway and genetic interactions with values of 0.97 and 0.06 %, respectively. Final analyses revealed that there are two clusters of gene interactions and 13 genes were shown to be in evident relationship of interaction with regards to hypersensitivity. Conclusion: Analysis of differential gene expressions by topological and database approaches in the current study reveals 2 gene network clusters. These genes are CD3G, CD3E, CD3D, TK1, TOP2A, CDK1, CDKN3, CCNB1, and CCNF. There are 9 key protein interactions in hypersensitivity reactions and may serve as biomarkers for SJS and TEN. Pathways related gene clusters has been identified and a genetic model to predict SJS and TEN early incidence using these biomarker genes has been developed.
Resumo:
Experiments were conducted at the GALCIT supersonic shear-layer facility to investigate aspects of reacting transverse jets in supersonic crossflow using chemiluminescence and schlieren image-correlation velocimetry. In particular, experiments were designed to examine mixing-delay length dependencies on jet-fluid molar mass, jet diameter, and jet inclination.
The experimental results show that mixing-delay length depends on jet Reynolds number, when appropriately normalized, up to a jet Reynolds number of 500,000. Jet inclination increases the mixing-delay length, but causes less disturbance to the crossflow when compared to normal jet injection. This can be explained, in part, in terms of a control-volume analysis that relates jet inclination to flow conditions downstream of injection.
In the second part of this thesis, a combustion-modeling framework is proposed and developed that is tailored to large-eddy simulations of turbulent combustion in high-speed flows. Scaling arguments place supersonic hydrocarbon combustion in a regime of autoignition-dominated distributed reaction zones (DRZ). The proposed evolution-variable manifold (EVM) framework incorporates an ignition-delay data-driven induction model with a post-ignition manifold that uses a Lagrangian convected 'balloon' reactor model for chemistry tabulation. A large-eddy simulation incorporating the EVM framework captures several important reacting-flow features of a transverse hydrogen jet in heated-air crossflow experiment.
Resumo:
Reactive intermediates play an important the within the realm of chemical synthesis. Their high energy and transient nature make them difficult to observe and characterize, but it is these same properties that empower them to form bonds traditionally seen as difficult to prepare and unusual architectures quickly and efficiently. Herein, two reactive intermediates, arynes and transitient (2azaaryl)-cuprates, are exploited for their abilities to prepare important chemical motifs. Both serve as an avenue into the functionalization of arenes to provide products which hold value in a variety of fields including natural product total syntethis, pharmaseuticals and ligand design.