997 resultados para re-precipitation
Resumo:
Ultrathin bimetallic layers create unusual magnetic and surface chemical effects through the modification of electronic structure brought on by low dimensionality, polymorphism, reduced screening, and epitaxial strain. Previous studies have related valence and core-level shifts to surface reactivity through the d-band model of Hammer and Nørskov, and in heteroepitaxial films this band position is determined by competing effects of coordination, strain, and hybridization of substrate and overlayer states. In this study we employ the epitaxially matched Pd on Re{0001} system to grow films with no lateral strain. We use a recent advancement in low-energy electron diffraction to expand the data range sufficiently for a reliable determination of the growth sequence and out-of-plane surface relaxation as a function of film thickness. The results are supported by scanning tunneling microscopy and X-ray photoemission spectroscopy, which show that the growth is layer-by-layer with significant core-level shifts due to changes in film structure, morphology, and bonding.
Resumo:
Empirical studies using satellite data and radiosondes have shown that precipitation increases with column water vapor (CWV) in the tropics, and that this increase is much steeper above some critical CWV value. Here, eight years of 1-min-resolution microwave radiometer and optical gauge data at Nauru Island are analyzed to better understand the relationships among CWV, column liquid water (CLW), and precipitation at small time scales. CWV is found to have large autocorrelation times compared with CLW and precipitation. Before precipitation events, CWV increases on both a synoptic-scale time period and a subsequent shorter time period consistent with mesoscale convective activity; the latter period is associated with the highest CWV levels. Probabilities of precipitation increase greatly with CWV. Given initial high CWV, this increased probability of precipitation persists at least 10–12 h. Even in periods of high CWV, however, probabilities of initial precipitation in a 5-min period remain low enough that there tends to be a lag before the start of the next precipitation event. This is consistent with precipitation occurring stochastically within environments containing high CWV, with the latter being established by a combination of synoptic-scale and mesoscale forcing.
Resumo:
A key strategy to improve the skill of quantitative predictions of precipitation, as well as hazardous weather such as severe thunderstorms and flash floods is to exploit the use of observations of convective activity (e.g. from radar). In this paper, a convection-permitting ensemble prediction system (EPS) aimed at addressing the problems of forecasting localized weather events with relatively short predictability time scale and based on a 1.5 km grid-length version of the Met Office Unified Model is presented. Particular attention is given to the impact of using predicted observations of radar-derived precipitation intensity in the ensemble transform Kalman filter (ETKF) used within the EPS. Our initial results based on the use of a 24-member ensemble of forecasts for two summer case studies show that the convective-scale EPS produces fairly reliable forecasts of temperature, horizontal winds and relative humidity at 1 h lead time, as evident from the inspection of rank histograms. On the other hand, the rank histograms seem also to show that the EPS generates too much spread for forecasts of (i) surface pressure and (ii) surface precipitation intensity. These may indicate that for (i) the value of surface pressure observation error standard deviation used to generate surface pressure rank histograms is too large and for (ii) may be the result of non-Gaussian precipitation observation errors. However, further investigations are needed to better understand these findings. Finally, the inclusion of predicted observations of precipitation from radar in the 24-member EPS considered in this paper does not seem to improve the 1-h lead time forecast skill.
Resumo:
A coqueluche é uma doença respiratória, causada pela bactéria Bordetella pertussis. Atualmente, estima-se a ocorrência anual de 50 milhões de casos e mais de 300 mil mortes anuais em todo mundo. A transmissão ocorre, principalmente, pelo contato direto de uma pessoa doente com uma pessoa suscetível, através de gotículas de secreção da orofaringe eliminada por tosse ou espirro. O estudo realizado objetivou a caracterização da coqueluche como doença re-emergente, visando a análise epidemiológica da doença no Estado do Rio de Janeiro, valorizando também a percepção da Biossegurança pelos profissionais da área da saúde. Os resultados alcançados revelaram indicadores da ressurgência da doença no Brasil. As análises foram objeto de reflexões propostas em quatro artigos científicos, que explicitaram as metodologias utilizadas, os resultados encontrados e as discussões pertinentes à pesquisa. Os artigos intitulam-se: (1) An overview of reemerging Pertussis and evidence of ressurgence in Brazil, (2); A re-emergência da coqueluche; Da rotina dos atendimentos ao imperativo da Biossegurança (3); Fórum itinerante de ciência e saúde. Programa de capacitação para as doenças negligenciadas e re-emergentes e (4) Identification of linear B epitopes of pertactin of Bordetella pertussis induced by immunization with whole and acellular vaccine
Resumo:
Extra-tropical cyclones are identified and compared using data from four recent re-analyses for the winter periods in both hemispheres. Results show the largest differences occur between the older lower resolution JRA25 re-analysis when compared with the newer high resolution re-analyses, in particular in the Southern Hemisphere (SH). Spatial differences between the newest re-analyses are small in both hemispheres and generally not significant except some common regions associated with cyclogenesis close to orography. Intensities are generally related to spatial resolution except NASA-MERRA which has larger intensities for several different measures. Matching storms between re-analyses shows the number matched between ERA-Interim and the other re-analyses are similar in the Northern Hemisphere (NH). In the SH the number matched between JRA25 and ERA-Interim is lower than in the NH, but for NASA-MERRA and NCEP-CFSR the number matched is similar to the NH. The mean separation of the identically same cyclones is typically less than 20 geodesic in both hemispheres for the latest re-analyses, whereas JRA25 compared with the other re-analyses has a broader distribution in the SH indicating greater uncertainty. The instantaneous intensity differences for matched storms shows narrow distributions for pressure while for winds and vorticity the distributions are much broader indicating larger uncertainty typical of smaller scale fields. Composite cyclone diagnostics show that cyclones are very similar between the re-analyses, with differences being related to the intensities, consistent with the intensity results. Overall, results show NH cyclones correspond well between re-analyses, with a significant improvement in the SH for the latest re-analyses, indicating a convergence between re-analyses for cyclone properties.
Resumo:
We have examined the atmospheric water cycle of both Polar Regions, pole wards of 60°N and 60°S, using the ERA-Interim re-analysis and high-resolution simulations with the ECHAM5 model for both the present and future climate based on the IPCC, A1B scenario, representative of the last three decades of the 21st century. The annual precipitation in ERA-Interim amounts to ~17000 km3 and is more or less the same in the Arctic and the Antarctic, but it is composed differently. In the Arctic the annual evaporation is some 8000 km3 but some 3000 km3 less in the Antarctica where the net horizontal transport is correspondingly larger. The net water transport of the model is more intense than in ERA-Interim, in the Arctic the difference is 2.5% and in the Antarctic it is 6.2%. Precipitation and net horizontal transport in the Arctic has a maximum in August and September. Evaporation peaks in June and July. The seasonal cycle is similar in Antarctica with the highest precipitation in the austral autumn. The largest net transport occurs at the end of the major extra-tropical storm tracks in the Northern Hemisphere such as the eastern Pacific and eastern north Atlantic. The variability of the model is virtually identical to that of the re-analysis and there are no changes in variability between the present climate and the climate at the end of the 21st century when normalized with the higher level of moisture. The changes from year to year are substantial with the 20 and 30-year records being generally too short to identify robust trends in the hydrological cycle. In the A1B climate scenario the strength of the water cycle increases by some 25% in the Arctic and by 19% in the Antarctica, as measured by annual precipitation. The increase in the net horizontal transport is 29% and 22% respectively, and the increase in evaporation correspondingly less. The net transport follows closely the Clausius-Clapeyron relation. There is 2 a minor change in the annual cycle of the Arctic atmospheric water cycle with the maximum transport and precipitation occurring later in the year. There is a small imbalance of some 4-6% between the net transport and precipitation minus evaporation. We suggest that this is mainly due to the fact the transport is calculated from instantaneous 6-hourly data while precipitation and evaporation is accumulated over a 6 hour period. The residual difference is proportionally similar for all experiments and hardly varies from year to year.
Resumo:
Two so-called “integrated” polarimetric rate estimation techniques, ZPHI (Testud et al., 2000) and ZZDR (Illingworth and Thompson, 2005), are evaluated using 12 episodes of the year 2005 observed by the French C-band operational Trappes radar, located near Paris. The term “integrated” means that the concentration parameter of the drop size distribution is assumed to be constant over some area and the algorithms retrieve it using the polarimetric variables in that area. The evaluation is carried out in ideal conditions (no partial beam blocking, no ground-clutter contamination, no bright band contamination, a posteriori calibration of the radar variables ZH and ZDR) using hourly rain gauges located at distances less than 60 km from the radar. Also included in the comparison, for the sake of benchmarking, is a conventional Z = 282R1.66 estimator, with and without attenuation correction and with and without adjustment by rain gauges as currently done operationally at Météo France. Under those ideal conditions, the two polarimetric algorithms, which rely solely on radar data, appear to perform as well if not better, pending on the measurements conditions (attenuation, rain rates, …), than the conventional algorithms, even when the latter take into account rain gauges through the adjustment scheme. ZZDR with attenuation correction is the best estimator for hourly rain gauge accumulations lower than 5 mm h−1 and ZPHI is the best one above that threshold. A perturbation analysis has been conducted to assess the sensitivity of the various estimators with respect to biases on ZH and ZDR, taking into account the typical accuracy and stability that can be reasonably achieved with modern operational radars these days (1 dB on ZH and 0.2 dB on ZDR). A +1 dB positive bias on ZH (radar too hot) results in a +14% overestimation of the rain rate with the conventional estimator used in this study (Z = 282R^1.66), a -19% underestimation with ZPHI and a +23% overestimation with ZZDR. Additionally, a +0.2 dB positive bias on ZDR results in a typical rain rate under- estimation of 15% by ZZDR.
Resumo:
The retention rate of a company has an impact on its earnings and dividend growth. Lease structures and performance measurement practice force real estate investment managers to adopt full distribution policies. Does this lead to lower income growth in real estate? This paper examines several European office markets across which the effective retention rates vary. It then compares depreciation rates across these markets. It is concluded that there is evidence of a relationship between retention and depreciation. Those markets with particularly inflexible lease structures exhibit low retention rates and higher levels of rental value depreciation. This poses interesting questions concerning the appropriate way to measure property performance across markets exhibiting significantly different retention rates and also raises important issues for global investors.
Resumo:
Assessment of changes in precipitation (P) as a function of percentiles of surface temperature (T) and 500 hPa vertical velocity (ω) are presented, considering present-day simulations and observational estimates from the Global Precipitation Climatology Project (GPCP) combined with the European Centre for Medium-range Weather Forecasts Interim reanalysis (ERA Interim). There is a tendency for models to overestimate P in the warm, subsiding regimes compared to GPCP, in some cases by more than 100%, while many models underestimate P in the moderate temperature regimes. Considering climate change projections between 1980–1999 and 2080–2099, responses in P are characterised by dP/dT ≥ 4%/K over the coldest 10–20% of land points and over warm, ascending ocean points while P declines over the warmest, descending regimes (dP/dT ∼ − 4%/K for model ensemble means). The reduced Walker circulation limits this contrasting dP/dT response in the tropical wet and dry regimes only marginally. Around 70% of the global surface area exhibits a consistent sign for dP/dT in at least 6 out of a 7-member model ensemble when considering P composites in terms of dynamic regime.