966 resultados para rail tunnel
Resumo:
There has long been a question as to whether crowding in rail passenger transport poses a threat to passenger health related to the experience of stress. A review of the scientific literature was conducted. Little rail-specific empirical research was identified. The more general research that does exist suggests that high-density environments are not necessarily perceived as crowded and that stress-related physiological, psychological and behavioural reactions do not necessarily follow from exposure to such environments. Several factors are identified that may moderate the impact of a high-density environment on perceptions of crowding and the subsequent experience and effects of stress. These include, inter alia, perceptions of control and predictability of events. However, if caused, the experience and effects of stress may be made worse by inadequate coach design that gives rise to discomfort. The model that emerges from these findings offers a suitable framework for the development of research questions that should help translate emerging knowledge into practical interventions, for the reduction of any adverse health outcomes associated with crowding.
Resumo:
Incidents and rolling stock breakdowns are commonplace in rapid transit rail systems and may disrupt the system performance imposing deviations from planned operations. A network design model is proposed for reducing the effect of disruptions less likely to occur. Failure probabilities are considered functions of the amount of services and the rolling stock’s routing on the designed network so that they cannot be calculated a priori but result from the design process itself. A two recourse stochastic programming model is formulated where the failure probabilities are an implicit function of the number of services and routing of the transit lines.
Resumo:
Proiektuak existitzen den ondare handiaren espazioa adaptatzen du arkitektura eskola bat bihurtu dadin. Sistema espazial bat planteatu da, bolumenen berezko ardatzetan oinarritu dena. Orokorrean, bere funtzioa espazio berri itxiak sortzea da monumentaltasuna eta eskala txikituz, uzten den hutsarekin orekan geratuz. Hutsak zein beteak garrantzi berbera dute proposamenean.
Resumo:
Tall buildings are wind-sensitive structures and could experience high wind-induced effects. Aerodynamic boundary layer wind tunnel testing has been the most commonly used method for estimating wind effects on tall buildings. Design wind effects on tall buildings are estimated through analytical processing of the data obtained from aerodynamic wind tunnel tests. Even though it is widely agreed that the data obtained from wind tunnel testing is fairly reliable the post-test analytical procedures are still argued to have remarkable uncertainties. This research work attempted to assess the uncertainties occurring at different stages of the post-test analytical procedures in detail and suggest improved techniques for reducing the uncertainties. Results of the study showed that traditionally used simplifying approximations, particularly in the frequency domain approach, could cause significant uncertainties in estimating aerodynamic wind-induced responses. Based on identified shortcomings, a more accurate dual aerodynamic data analysis framework which works in the frequency and time domains was developed. The comprehensive analysis framework allows estimating modal, resultant and peak values of various wind-induced responses of a tall building more accurately. Estimating design wind effects on tall buildings also requires synthesizing the wind tunnel data with local climatological data of the study site. A novel copula based approach was developed for accurately synthesizing aerodynamic and climatological data up on investigating the causes of significant uncertainties in currently used synthesizing techniques. Improvement of the new approach over the existing techniques was also illustrated with a case study on a 50 story building. At last, a practical dynamic optimization approach was suggested for tuning structural properties of tall buildings towards attaining optimum performance against wind loads with less number of design iterations.
Resumo:
Sounds of the Suburb was a commissioned public art proposal based upon a brief set by Queensland Rail for the major redevelopment at their Brunswick Street Railway Station, Fortitude Valley, Brisbane. I proposed a large scale, electronic artwork to be distributed across the glass fronted structure of their station’s new concourse building. It was designed as a network of LED based ‘tracking’ - along which would travel electronically animated, ‘trains’ of text synchronised to the actual train timetables. Each message packet moved endlessly through a complex spatial network of ‘tracks’ and ‘stations’ set both inside, outside and via the concourse. The design was underpinned by large scale image of sound waves etched onto the architecture’s glass and was accompanied by two inset monitors each presenting ghosted images of passenger movements within the concourse, time-delay recorded and then cross-combined in realtime to form new composites.----- Each moving, reprogrammable phrase was conceived as a ‘train of thought’ and ostensibly contained an idea or concept about popular cultures surrounding contemporary music – thereby meeting the brief that the work should speak to the diverse musical cultures central to Fortitude Valley’s image as an entertainment hub. These cultural ‘memes’, gathered from both passengers and the music press were situated alongside quotes from philosophies of networking, speed and digital ecologies. These texts would continually propagate, replicate and cross fertlise as they moved throughout the ‘network’, thereby writing a constantly evolving ‘textual soundcape’ of that place. This idea was further cemented through the pace, scale and rhythm of passenger movements continually recorded and re-presented on the smaller screens.
Comparison of emission rate values for odour and odorous chemicals derived from two sampling devices
Resumo:
Field and laboratory measurements identified a complex relationship between odour emission rates provided by the US EPA dynamic emission chamber and the University of New South Wales wind tunnel. Using a range of model compounds in an aqueous odour source, we demonstrate that emission rates derived from the wind tunnel and flux chamber are a function of the solubility of the materials being emitted, the concentrations of the materials within the liquid; and the aerodynamic conditions within the device – either velocity in the wind tunnel, or flushing rate for the flux chamber. The ratio of wind tunnel to flux chamber odour emission rates (OU m-2 s) ranged from about 60:1 to 112:1. The emission rates of the model odorants varied from about 40:1 to over 600:1. These results may provide, for the first time, a basis for the development of a model allowing an odour emission rate derived from either device to be used for odour dispersion modelling.
Resumo:
In recent years, the transport simulation of large road networks has become far more rapid and detailed, and many exciting developments in this field have emerged. In this perspective, the authors describe the simulation of automobile, pedestrian and rail traffic, coupled to new applications, such as the embedding of traffic simulation into driving simulators, to give a more realistic environment of driver behavior surrounding the subject vehicle.
Resumo:
• Introduction: Concern and action for rural road safety is relatively new in Australia in comparison to the field of traffic safety as a whole. In 2003, a program of research was begun by the Centre for Accident Research and Road Safety - Queensland (CARRS-Q) and the Rural Health Research Unit (RHRU) at James Cook University to investigate factors contributing to serious rural road crashes in the North Queensland region. This project was funded by the Premier’s Department, Main Roads Department, Queensland Transport, QFleet, Queensland Rail, Queensland Ambulance Service, Department of Natural Resources and Queensland Police Service. Additional funding was provided by NRMA Insurance for a PhD scholarship. In-kind support was provided through the four hospitals used for data collection, namely Cairns Base Hospital, The Townsville Hospital, Mount Isa Hospital and Atherton Hospital.----- The primary aim of the project was to: Identify human factors related to the occurrence of serious traffic incidents in rural and remote areas of Australia, and to the trauma suffered by persons as a result of these incidents, using a sample drawn from a rural and remote area in North Queensland.----- The data and analyses presented in this report are the core findings from two broad studies: a general examination of fatalities and casualties from rural and remote crashes for the period 1 March 2004 until 30 June 2007, and a further linked case-comparison study of hospitalised patients compared with a sample of non-crash-involved drivers.----- • Method: The study was undertaken in rural North Queensland, as defined by the Australian Bureau of Statistics (ABS) statistical divisions of North Queensland, Far North Queensland and North-West Queensland. Urban areas surrounding Townsville, Thuringowa and Cairns were not included. The study methodology was centred on serious crashes, as defined by a resulting hospitalisation for 24 hours or more and/or a fatality. Crashes meeting this criteria within the North Queensland region between 1 March 2004 and 30 June 2007 were identified through hospital records and interviewed where possible. Additional data was sourced from coroner’s reports, the Queensland Transport road crash database, the Queensland Ambulance Service and the study hospitals in the region.----- This report is divided into chapters corresponding to analyses conducted on the collected crash and casualty data.----- Chapter 3 presents an overview of all crashes and casualties identified during the study period. Details are presented in regard to the demographics and road user types of casualties; the locations, times, types, and circumstances of crashes; along with the contributing circumstances of crashes.----- Chapter 4 presents the results of summary statistics for all casualties for which an interview was able to be conducted. Statistics are presented separately for drivers and riders, passengers, pedestrians and cyclists. Details are also presented separately for drivers and riders crashing in off-road and on-road settings. Results from questionnaire data are presented in relation to demographics; the experience of the crash in narrative form; vehicle characteristics and maintenance; trip characteristics (e.g. purpose and length of journey; periods of fatigue and monotony; distractions from driving task); driving history; alcohol and drug use; medical history; driving attitudes, intentions and behaviour; attitudes to enforcement; and experience of road safety advertising.----- Chapter 5 compares the above-listed questionnaire results between on-road crash-involved casualties and interviews conducted in the region with non-crash-involved persons. Direct comparisons as well as age and sex adjusted comparisons are presented.----- Chapter 6 presents information on those casualties who were admitted to one of the study hospitals during the study period. Brief information is given regarding the demographic characteristics of these casualties. Emergency services’ data is used to highlight the characteristics of patient retrieval and transport to and between hospitals. The major injuries resulting from the crashes are presented for each region of the body and analysed by vehicle type, occupant type, seatbelt status, helmet status, alcohol involvement and nature of crash. Estimates are provided of the costs associated with in-hospital treatment and retrieval.----- Chapter 7 describes the characteristics of the fatal casualties and the nature and circumstances of the crashes. Demographics, road user types, licence status, crash type and contributing factors for crashes are presented. Coronial data is provided in regard to contributing circumstances (including alcohol, drugs and medical conditions), cause of death, resulting injuries, and restraint and helmet use.----- Chapter 8 presents the results of a comparison between casualties’ crash descriptions and police-attributed crash circumstances. The relative frequency of contributing circumstances are compared both broadly within the categories of behavioural, environmental, vehicle related, medical and other groupings and specifically for circumstances within these groups.----- Chapter 9 reports on the associated research projects which have been undertaken on specific topics related to rural road safety.----- Finally, Chapter 10 reports on the conclusions and recommendations made from the program of research.---- • Major Recommendations : From the findings of these analyses, a number of major recommendations were made: + Male drivers and riders - Male drivers and riders should continue to be the focus of interventions, given their very high representation among rural and remote road crash fatalities and serious injuries.----- - The group of males aged between 30 and 50 years comprised the largest number of casualties and must also be targeted for change if there is to be a meaningful improvement in rural and remote road safety.----- + Motorcyclists - Single vehicle motorcycle crashes constitute over 80% of serious, on-road rural motorcycle crashes and need particular attention in development of policy and infrastructure.----- - The motorcycle safety consultation process currently being undertaken by Queensland Transport (via the "Motorbike Safety in Queensland - Consultation Paper") is strongly endorsed. As part of this process, particular attention needs to be given to initiatives designed to reduce rural and single vehicle motorcycle crashes.----- - The safety of off-road riders is a serious problem that falls outside the direct responsibility of either Transport or Health departments. Responsibility for this issue needs to be attributed to develop appropriate policy, regulations and countermeasures.----- + Road safety for Indigenous people - Continued resourcing and expansion of The Queensland Aboriginal Peoples and Torres Strait Islander Peoples Driver Licensing Program to meet the needs of remote and Indigenous communities with significantly lower licence ownership levels.----- - Increased attention needs to focus on the contribution of geographic disadvantage (remoteness) factors to remote and Indigenous road trauma.----- + Road environment - Speed is the ‘final common pathway’ in determining the severity of rural and remote crashes and rural speed limits should be reduced to 90km/hr for sealed off-highway roads and 80km/hr for all unsealed roads as recommended in the Austroads review and in line with the current Tasmanian government trial.----- - The Department of Main Roads should monitor rural crash clusters and where appropriate work with local authorities to conduct relevant audits and take mitigating action. - The international experts at the workshop reviewed the data and identified the need to focus particular attention on road design management for dangerous curves. They also indicated the need to maximise the use of audio-tactile linemarking (audible lines) and rumble strips to alert drivers to dangerous conditions and behaviours.----- + Trauma costs - In accordance with Queensland Health priorities, recognition should be given to the substantial financial costs associated with acute management of trauma resulting from serious rural and remote crashes.----- - Efforts should be made to develop a comprehensive, regionally specific costing formula for road trauma that incorporates the pre-hospital, hospital and post-hospital phases of care. This would inform health resource allocation and facilitate the evaluation of interventions.----- - The commitment of funds to the development of preventive strategies to reduce rural and remote crashes should take into account the potential cost savings associated with trauma.----- - A dedicated study of the rehabilitation needs and associated personal and healthcare costs arising from rural and remote road crashes should be undertaken.----- + Emergency services - While the study has demonstrated considerable efficiency in the response and retrieval systems of rural and remote North Queensland, relevant Intelligent Transport Systems technologies (such as vehicle alarm systems) to improve crash notification should be both developed and evaluated.----- + Enforcement - Alcohol and speed enforcement programs should target the period between 2 and 6pm because of the high numbers of crashes in the afternoon period throughout the rural region.----- + Drink driving - Courtesy buses should be advocated and schemes such as the Skipper project promoted as local drink driving countermeasures in line with the very high levels of community support for these measures identified in the hospital study.------ - Programs should be developed to target the high levels of alcohol consumption identified in rural and remote areas and related involvement in crashes.----- - Referrals to drink driving rehabilitation programs should be mandated for recidivist offenders.----- + Data requirements - Rural and remote road crashes should receive the same quality of attention as urban crashes. As such, it is strongly recommended that increased resources be committed to enable dedicated Forensic Crash Units to investigate rural and remote fatal and serious injury crashes.----- - Transport department records of rural and remote crashes should record the crash location using the national ARIA area classifications used by health departments as a means to better identifying rural crashes.----- - Rural and remote crashes tend to be unnoticed except in relatively infrequent rural reviews. They should receive the same level of attention and this could be achieved if fatalities and fatal crashes were coded by the ARIA classification system and included in regular crash reporting.----- - Health, Transport and Police agencies should collect a common, minimal set of data relating to road crashes and injuries, including presentations to small rural and remote health facilities.----- + Media and community education programmes - Interventions seeking to highlight the human contribution to crashes should be prioritised. Driver distraction, alcohol and inappropriate speed for the road conditions are key examples of such behaviours.----- - Promotion of basic safety behaviours such as the use of seatbelts and helmets should be given a renewed focus.----- - Knowledge, attitude and behavioural factors that have been identified for the hospital Brief Intervention Trial should be considered in developing safety campaigns for rural and remote people. For example challenging the myth of the dangerous ‘other’ or ‘non-local’ driver.----- - Special educational initiatives on the issues involved in rural and remote driving should be undertaken. For example the material used by Main Roads, the Australian Defence Force and local initiatives.
Resumo:
Engineering assets such as roads, rail, bridges and other forms of public works are vital to the effective functioning of societies {Herder, 2006 #128}. Proficient provision of this physical infrastructure is therefore one of the key activities of government {Lædre, 2006 #123}. In order to ensure engineering assets are procured and maintained on behalf of citizens, government needs to devise the appropriate policy and institutional architecture for this purpose. The changing institutional arrangements around the procurement of engineering assets are the focus of this paper. The paper describes and analyses the transition to new, more collaborative forms of procurement arrangements which are becoming increasingly prevalent in Australia and other OECD countries. Such fundamental shifts from competitive to more collaborative approaches to project governance can be viewed as a major transition in procurement system arrangements. In many ways such changes mirror the shift from New Public Management, with its emphasis on the use of market mechanisms to achieve efficiencies {Hood, 1991 #166}, towards more collaborative approaches to service delivery, such as those under network governance arrangements {Keast, 2007 #925}. However, just as traditional forms of procurement in a market context resulted in unexpected outcomes for industry, such as a fragmented industry afflicted by chronic litigation {Dubois, 2002 #9}, the change to more collaborative forms of procurement is unlikely to be a panacea to the problems of procurement, and may well also have unintended consequences. This paper argues that perspectives from complex adaptive systems (CAS) theory can contribute to the theory and practice of managing system transitions. In particular the concept of emergence provides a key theoretical construct to understand the aggregate effect that individual project governance arrangements can have upon the structure of specific industries, which in turn impact individual projects. Emergence is understood here as the macro structure that emerges out of the interaction of agents in the system {Holland, 1998 #100; Tang, 2006 #51}.
Resumo:
One of the most critical issues for building innovation capacity in organisations is the acquisition and maintenance of knowledge. As knowledge is the basis of human capital, then the ability to attract, retain and engage talent is argued to be an important element of innovation. By attracting and retaining good staff, the organisation is retaining organisational knowledge which is necessary particularly for exploitation of current capabilities, but will also contribute to capacity for exploration for future innovation. This paper addresses the importance of retaining and developing staff as a critical issue for knowledge management and addresses the issue of retaining talent through effective succession management practices. The findings from an exploratory study into current practices in the Australian rail sector, provides further insight into the potentially critical issues for the effective use of succession management as a knowledge management and employee retention tool for building innovation capacity.
Resumo:
President’s Report Hello fellow AITPM members, First I would like on behalf of all AITPM members to send our condolences to all who have been affected by February’s tragic bushfires in regional Victoria, and deliver our best wishes to all of those involved in the rebuilding efforts. Over time I expect that the Victorian Government’s Royal Commission will analyse the circumstances and put forward a range of measures which will improve fire safety in vulnerable areas. As transport professionals it will be important for us to consider the findings and look to undertaking any recommendations that relate to the work we do. Not only in Victoria, but nationwide. In particular, the importance of logistics was highlighted following the fire events. Donors across Australia were this time requested to donate money rather than goods, presumably due in part to problems associated with the transport system coping with additional uncoordinated freight load, whilst being needed to support emergency management vehicle and managed freight movements. Notwithstanding, it was wonderful to see otherwise difficult to obtain goods, such as animal feed, being donated from far afield and transported in kind by trucking operators. As stated in last month’s Newsletter, AITPM made a direct cash donation to the Red Cross Bushfire Appeal immediately following the events, and a further donation to the Queensland Premier’s Disaster Relief Fund to support recovery after the North Queensland floods, which claimed seven lives. Again, we will need to monitor how the rebuilding effort unfolds particularly in regional Victoria and centres including Ingham in North Queensland, but I would urge all AITPM members who are in a position to support the restoration of the affected communities to play a part, particularly over time once the initial shock subsides and the steady job of rebuilding is underway. Onto lighter matters, AITPM’s flagship event, the 2009 AITPM National Conference, Traffic Beyond Tomorrow, being held in Adelaide from 5 to 7 August, is fast approaching. www.aitpm.com has all of the details about how to register, sponsor a booth, and so forth. We are looking forward to catching up with our conference “regulars” and meeting with new folks to AITPM, and Australian traffic and transport planning and management. Adelaide is one of my favourite places to visit and I’m looking forward to riding the light rail line extension through town and checking out progress on the road system development. Best regards all, Jon Bunker
Resumo:
President’s Report Hello fellow AITPM members, A few weeks ago we saw another example of all levels of Government pulling together in real time to try to deal with a major transport incident, this time it was container loads of ammonium nitrate falling off the Pacific Adventurer during Cyclone Hamish and the associated major oil spill due to piercing of its hull off Moreton Bay in southern Queensland. The oil spill was extensive, affecting beaches and estuaries from Moreton Island north to the Sunshine Coast; a coastal stretch of at least 60km. We saw the Queensland Government, Brisbane, Moreton Bay and Sunshine Coast Regional Council crews deployed quickly once the gravity of the situation was realised to clean up toxic oil on beaches and prevent extensive upstream contamination. Environmental agencies public and private were quick to respond to help affected wildlife. The Navy’s HMAS Yarra and another minesweeper were deployed to search for the containers in the coastal area in an effort to have them salvaged before all ammonium nitrate could leach into and harm marine habitat, which would have a substantial impact not only on that environment but also the fishing industry. all of this during the final fortnight before a State election.) While this could be branded as a maritime problem, the road transport and logistics system was crucial to the cleanup. The private vehicular ferries were enlisted to transport plant and equipment from Brisbane to Moreton Island. The plant themselves, such as graders, were drawn from road building and maintenance inventory. Hundreds of Councils’ staff were released from other activities to undertake the cleanup. While it will take some time for us to know the long term impacts of this incident, it seems difficult to fault “grassroots” government crews and their private counterparts, such as Island tourism staff, in the initial cleanup effort. From a traffic planning and management perspective, we should also remember that this sort of incident has happened on road and rail corridors in the past, albeit on lesser scales. It underlines that we do need to continue to protect communities, commercial interests, and the environment through rigorous heavy vehicle management, planning and management of dangerous goods routesincluding rail corridors through urban areas), and carefully considered incident and disaster recovery plans and protocols. I’d like to close in reminding everyone again that AITPM’s flagship event, the 2009 AITPM National Conference, Traffic Beyond Tomorrow, is being held in Adelaide from 5 to 7 August. SA Branch President Paul Morris informs me that we have had over 50 paper submissions to date, from which a very balanced and informative programme of sessions has been prepared. www.aitpm.com has all of the details about how to register, sponsor a booth, session, etc. Best regards all, Jon Bunker