998 resultados para quantum technologies
Resumo:
This paper presents an investigation of the mode-locking performance of a two-section external-cavity mode-locked InGaAs quantum-dot laser diode, focusing on repetition rate, pulse duration and pulse energy. The lowest repetition rate to-date of any passively mode-locked semiconductor laser diode is demonstrated (310 MHz) and a restriction on the pulse energy (at 0.4 pJ) for the shortest pulse durations is identified. Fundamental mode-locking from 310 MHz to 1.1 GHz was investigated, and harmonic mode-locking was achieved up to a repetition rate of 4.4 GHz. Fourier transform limited subpicosecond pulse generation was realized through implementation of an intra-cavity glass etalon, and pulse durations from 930fs to 8.3ps were demonstrated for a repetition rate of 1 GHz. For all investigations, mode-locking with the shortest pulse durations yielded constant pulse energies of ∼0.4 pJ, revealing an independence of the pulse energy on all the mode-locking parameters investigated (cavity configuration, driving conditions, pulse duration, repetition rate, and output power). © 2011 IEEE.
Resumo:
The simulation of complex chemical systems often requires a multi-level description, in which a region of special interest is treated using a computationally expensive quantum mechanical (QM) model while its environment is described by a faster, simpler molecular mechanical (MM) model. Furthermore, studying dynamic effects in solvated systems or bio-molecules requires a variable definition of the two regions, so that atoms or molecules can be dynamically re-assigned between the QM and MM descriptions during the course of the simulation. Such reassignments pose a problem for traditional QM/MM schemes by exacerbating the errors that stem from switching the model at the boundary. Here we show that stable, long adaptive simulations can be carried out using density functional theory with the BLYP exchange-correlation functional for the QM model and a flexible TIP3P force field for the MM model without requiring adjustments of either. Using a primary benchmark system of pure water, we investigate the convergence of the liquid structure with the size of the QM region, and demonstrate that by using a sufficiently large QM region (with radius 6 Å) it is possible to obtain radial and angular distributions that, in the QM region, match the results of fully quantum mechanical calculations with periodic boundary conditions, and, after a smooth transition, also agree with fully MM calculations in the MM region. The key ingredient is the accurate evaluation of forces in the QM subsystem which we achieve by including an extended buffer region in the QM calculations. We also show that our buffered-force QM/MM scheme is transferable by simulating the solvated Cl(-) ion.
Resumo:
This study evaluates the performance of a wide range of aquaculture systems in Bangladesh. It is by far the largest of its kind attempted to date. The purpose of this study was to identify and analyze the most important production systems, rather than to provide a nationally representative overview of the entire aquaculture sector of Bangladesh. As such, the study yields a huge amount of new information on production technologies that have never been thoroughly researched before. The study reveals an extremely diverse array of specialized, dynamic and rapidly evolving production technologies, adapted to a variety of market niches and local environmental conditions. This is a testament to the innovativeness of farmers and other value chain actors who have been the principal drivers of this development in Bangladesh. Data was collected from six geographical hubs. This survey was conducted from November 2011 to June 2012. Technological performance in terms of detailed input and output information, fish management practices, credit and marketing, and social and environmental issues were captured by the survey questionnaire, which had both open and closed format questions. The study generated insights that enable better understanding of aquaculture development in Bangladesh.
Resumo:
The growth techniques which have enabled the realization of InGaN-based multi-quantum-well (MQW) structures with high internal quantum efficiencies (IQE) on 150mm (6-in.) silicon substrates are reviewed. InGaN/GaN MQWs are deposited onto GaN templates on large-area (111) silicon substrates, using AlGaN strain-mediating interlayers to inhibit thermal-induced cracking and wafer-bowing, and using a SiN x interlayer to reduce threading dislocation densities in the active region of the MQW structure. MQWs with high IQE approaching 60% have been demonstrated. Atomic resolution electron microscopy and EELS analysis have been used to study the nature of the important interface between the Si(111) substrate and the AlN nucleation layer. We demonstrate an amorphous SiN x interlayer at the interface about 2nm wide, which does not, however, prevent good epitaxy of the AlN on the Si(111) substrate. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.