972 resultados para q-Deformed Quantum Mechanics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Incorporation of mevalonate-2-C14, acetate-1-C14, and formate-C14 into the lipids of microorganisms was studied. In the case of four bacteria tested—Agrobacterium tumefaciens, Azotobacter vinelandii, Escherichia coli, and a Pseudomonas species—the various homologues of coenzyme Q present were not labeled with any of the tracers used, although significant amounts of radioactivity were present in the lipids. Both acetate and mevalonate were incorporated into coenzyme Q and sterol of the moulds, Aspergillus niger, Neurospora crassa, Penicillium chrysogenum, and Gibberella fujickuroi, and a yeast, Torulopsis utilis. Mevalonate was incorporated into the side chain but not the ring, whereas acetate was incorporated into both. It appears that the mevalonate pathway for the synthesis of coenzyme Q is operative only in those organisms which also contain other isoprene compounds such as sterol and carotene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coenzyme Q was found to be distributed in rat liver cell fractions. Mitochondria accounted for only 40–60% of the total. The presence of coenzyme Q in nuclei, isolated by several methods, could always be correlated with the presence of oxidative enzymes. It has been established that coenzyme Q is a constituent of microsomes. Administered coenzyme Q10-C14 was preferentially taken up by mitochondrial and microsomal fractions. Exogenous coenzyme Q appears to be rapidly metabolized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, an attempt is made to study the influence of external light waves on the thermoelectric power under strong magnetic field (TPSM) in ultrathin films (UFs), quantum wires (QWs) and quantum dots (QDs) of optoelectronic materials whose unperturbed dispersion relation of the conduction electrons are defined by three and two band models of Kane together with parabolic energy bands on the basis of newly formulated electron dispersion laws in each case. We have plotted the TPSM as functions of film thickness, electron concentration, light intensity and wavelength for UFs, QWs and ODs of InSb, GaAs, Hg1-xCdxTe and In1-xGaxAsyP1-y respectively. It appears from the figures that for UFs, the TPSM increases with increasing thickness in quantum steps, decreases with increasing electron degeneracy exhibiting entirely different types of oscillations and changes with both light intensity and wavelength and these two latter types of plots are the direct signature of light waves on opto-TPSM. For QWs, the opto-TPSM exhibits rectangular oscillations with increasing thickness and shows enhanced spiky oscillations with electron concentration per unit length. For QDs, the opto-TPSM increases with increasing film thickness exhibiting trapezoidal variations which occurs during quantum jumps and the length and breadth of the trapezoids are totally dependent on energy band constants. Under the condition of non-degeneracy, the results of opto-TPSM gets simplified into the well-known form of classical TPSM equation which the function of three constants only and being invariant of the signature of band structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We compute AC electrical transport at quantum Hall critical points, as modeled by intersecting branes and gauge/gravity duality. We compare our results with a previous field theory computation by Sachdev, and find unexpectedly good agreement. We also give general results for DC Hall and longitudinal conductivities valid for a wide class of quantum Hall transitions, as well as (semi)analytical results for AC quantities in special limits. Our results exhibit a surprising degree of universality; for example, we find that the high frequency behavior, including subleading behavior, is identical for our entire class of theories.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We reformulate and extend our recently introduced quantum kinetic theory for interacting fermion and scalar fields. Our formalism is based on the coherent quasiparticle approximation (cQPA) where nonlocal coherence information is encoded in new spectral solutions at off-shell momenta. We derive explicit forms for the cQPA propagators in the homogeneous background and show that the collision integrals involving the new coherence propagators need to be resummed to all orders in gradient expansion. We perform this resummation and derive generalized momentum space Feynman rules including coherent propagators and modified vertex rules for a Yukawa interaction. As a result we are able to set up self-consistent quantum Boltzmann equations for both fermion and scalar fields. We present several examples of diagrammatic calculations and numerical applications including a simple toy model for coherent baryogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Following the path-integral approach we show that the Schwarz-Hora effect is a one-electron quantum-mechanical phenomenon in that the de Broglie wave associated with a single electron is modulated by the oscillating electric field. The treatment brings out the crucial role played by the crystal in providing a discontinuity in the longitudinal component of the electric field. The expression derived for the resulting current density shows the appropriate oscillatory behaviour in time and distance. The possibility of there being a temporal counterpart of Aharonov-Bohm effect is briefly discussed in this context.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

COENZYME Q (CoQ), which is widely distributed in animal, plant and microbial sources, has been implicated in electron transport1 and generally assumed to be associated with mitochondria. However, it has also been found in non-mitochondrial fractions of green leaves, although it appears to be concentrated in mitochondria2. A similar distribution has now been demonstrated in rat liver cell fractions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a double dot system of equivalent, capacitively coupled semiconducting quantum dots, each coupled to its own lead, in a regime where there are two electrons on the double dot. Employing the numerical renormalization group, we focus here on single-particle dynamics and the zero-bias conductance, considering in particular the rich range of behaviour arising as the interdot coupling is progressively increased through the strong-coupling (SC) phase, from the spin-Kondo regime, across the SU(4) point to the charge-Kondo regime, and then towards and through the quantum phase transition to a charge-ordered ( CO) phase. We first consider the two-self-energy description required to describe the broken symmetry CO phase, and implications thereof for the non-Fermi liquid nature of this phase. Numerical results for single-particle dynamics on all frequency scales are then considered, with particular emphasis on universality and scaling of low-energy dynamics throughout the SC phase. The role of symmetry breaking perturbations is also briefly discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We derive the thermal correlators for twisted quantum fields on noncommutative spacetime. We show that the thermal expectation value of the number operator is same as in commutative spacetime, but that higher correlators are sensitive to the noncommutativity parameters phi(mu nu).