964 resultados para proton shuttle
Resumo:
The counteranion exchange of quaternary 1,2,3-triazolium salts was examined using a simple method that permitted halide ions to be swap for a variety of anions using an anion exchange resin (A¯ form). The method was applied to 1,2,3-triazolium-based ionic liquids and the iodideto- anion exchange proceeded in excellent to quantitative yields, concomitantly removing halide impurities. Additionally, an anion exchange resin (N3¯ form) was used to obtain the benzyl azide from benzyl halide under mild reaction. Likewise, following a similar protocol, bis(azidomethyl)arenes were also synthesized in excellent yields. The results of a proton NMR spectroscopic study of simple azolium-based ion pairs are discussed, with attention focused on the significance of the charged-assisted (CH)+···anion hydrogen bonds of simple azolium systems such as 1-butyl-3-methylimidazolium and 1-benzyl-3-methyl-1,2,3-triazolium salts.
Resumo:
The counteranion exchange of quaternary 1,2,3-triazolium salts was examined using a simple method that permitted halide ions to be swap for a variety of anions using an anion exchange resin (A¯ form). The method was applied to 1,2,3-triazolium-based ionic liquids and the iodideto- anion exchange proceeded in excellent to quantitative yields, concomitantly removing halide impurities. Additionally, an anion exchange resin (N3¯ form) was used to obtain the benzyl azide from benzyl halide under mild reaction. Likewise, following a similar protocol, bis(azidomethyl)arenes were also synthesized in excellent yields. The results of a proton NMR spectroscopic study of simple azolium-based ion pairs are discussed, with attention focused on the significance of the charged-assisted (CH)+···anion hydrogen bonds of simple azolium systems such as 1-butyl-3-methylimidazolium and 1-benzyl-3-methyl-1,2,3-triazolium salts.
Resumo:
The counteranion exchange of quaternary 1,2,3-triazolium salts was examined using a simple method that permitted halide ions to be swap for a variety of anions using an anion exchange resin (A¯ form). The method was applied to 1,2,3-triazolium-based ionic liquids and the iodideto- anion exchange proceeded in excellent to quantitative yields, concomitantly removing halide impurities. Additionally, an anion exchange resin (N3¯ form) was used to obtain the benzyl azide from benzyl halide under mild reaction. Likewise, following a similar protocol, bis(azidomethyl)arenes were also synthesized in excellent yields. The results of a proton NMR spectroscopic study of simple azolium-based ion pairs are discussed, with attention focused on the significance of the charged-assisted (CH)+···anion hydrogen bonds of simple azolium systems such as 1-butyl-3-methylimidazolium and 1-benzyl-3-methyl-1,2,3-triazolium salts.
Resumo:
A new model for the H2 antagonists binding site is postulated based on adsorption coefficient values of sixteen antagonists, in the affinities constants of the primary and secondary binding sites, and in the chemical characterization of these sites by 3D-QSAR. All study compounds are in the extended conformation and deprotonated form. The lateral validation of the QSARs, CoMFA analysis, affinity constants and chemical similarity data suggest that the antagonists block the proton pump in the H2 receptor interacting with two tyrosines - one in the helix 5, and other in the helix 6.
Resumo:
This work presents the electrochemical and quantum chemical studies of the oxidation of the tricyclic antidepressant amitriptyline (AM) employing a carbon-polyurethane composite electrode (GPU) in a 0.1 mol L-1 BR buffer. The electrochemical results showed that the oxidation of AM occurs irreversibly at potentials close to 830 mV with the loss of one electron and one proton and is controlled by reagent and product adsorption. According to the PM3 results, the atom C16 is the region of highest probability for the oxidation of AM since it has the largest charge variation.
Resumo:
The ¹H NMR data set of a series of 3-aryl (1,2,4)-oxadiazol-5-carbohydrazide benzylidene derivatives synthesized in our group was analyzed using the chemometric technique of principal component analysis (PCA). Using the original ¹H NMR data PCA allowed identifying some misassignments of the proton aromatic chemical shifts. As a consequence of this multivariate analysis, nuclear Overhauser difference experiments were performed to investigate the ambiguity of other assignments of the ortho and meta aromatic hydrogens for the compound with the bromine substituent. The effect of the 1,2,4-oxadiazol group as an electron acceptor, mainly for the hydrogens 12,13, has been highlighted.
Resumo:
The ONIOM method was used to calculate the proton affinities (PA) of n-alkylamines (CnH2n+1NH2, n = 3 to 6, 8, 10, 12, 14, 16 and 18). The calculations were carried out at several levels (HF, MP2, B3LYP, QCISD(T), ...) using Pople basis sets and at the QCISD(T) level using basis sets developed by the generator coordinate method (GCM) and adapted to effective core potentials. PAs were also obtained through the GCM and high level methods, like ONIOM[QCISD(T)/6-31+G(2df,p):MP2/6-31G+G(d,p))//ONIOM[MP2/6-31+G(d,p):HF/6-31G]. The average error using the GCM, with respect to experimental data, was 3.4 kJ mol-1.
Resumo:
A dual model with a nonlinear proton Regge trajectory in the missing mass (M_X^2) channel is constructed. A background based on a direct-channel exotic trajectory, developed and applied earlier for the inclusive electron-proton cross section description in the nucleon resonance region, is used. The parameters of the model are determined from the extrapolations to earlier experiments. Predictions for the low-mass (2 < M_X^2 < 8GeV^2) diffraction dissociation cross sections at the LHC energies are given.
Resumo:
A detailed NMR (¹H , COSY, ROESY) spectroscopic study of complexation of enalapril maleate with beta-cyclodextrin was carried out. The ¹H NMR spectrum of enalapril maleate confirmed the existence of cis-trans equilibrium in solution, possibly due to hindered rotation along the amide bond. The cis-trans ratio remained almost the same in the presence of beta-cyclodextrin but in one case it was found significantly different which suggests a catalytic role of beta-cyclodextrin in the isomerization. ¹H NMR titration studies confirmed the formation of an enalapril-beta-cyclodextrin inclusion complex as evidenced by chemical shift variations in the proton resonances of both the host and the guest. The stoichiometry of the complex was determined to be 2:1 (guest: host). The mode of penetration of the guest into the beta-cyclodextrin cavity as well as the structure of the complex were established using ROESY spectroscopy.
Resumo:
Hydrogen-bonded complexes formed by the interaction of the heterocyclic molecules C2H4O and C2H5N with HF, HCN, HNC and C2H2 have been studied using density functional theory. The hydrogen bond strength has been analyzed through electron density charge transfer from the proton acceptor to the proton donor. The density charge transfer has been estimated using different methods such as Mulliken population analysis, CHELPG, GAPT and AIM. It has been shown that AIM-estimated charge transfer correlates very well with the hydrogen bond energy and the infrared bathochromic effect of the proton donor stretching frequencies.
Resumo:
Pantoprazole is a proton pump inhibitor used in the treatment of digestive ulcers, gastro-esophageal reflux disease and in the eradication of Helicobacter pylori. In this work, an analytical method was developed and validated for the quantification of sodium pantoprazole by HPLC. The method was specific, linear, precise and exact. In order to verify the stability of pantoprazole during dissolution assays, pantoprazole solution in phosphate buffer pH 7.4 was kept at room temperature and protected from light for 22 days. Pantoprazole presented less than 5% of degradation in 6 hours and the half live of the degradation was 124 h.
Resumo:
In this work the effects of time and temperature of thermal treatments under reducing atmosphere (H2) on PtRu/C catalysts for the hydrogen oxidation reaction (HOR) in the presence of CO on a proton exchange membrane fuel cell (PEMFC) single cells have been studied. It can be seen that the increase of the treatment temperature leads to an increasing sintering of the catalyst particles with reduction of the active area, although the catalyst treated at 550 ºC presents more CO tolerance for the HOR.
Resumo:
Proton binding properties of humic and fulvic acids were studied by potentiometric titration. Carboxylic groups were the predominant ionizable sites in comparison to phenolic and amine groups. Total acidity of fulvic acid was 12 x 10-3 mol g-1, a number significantly higher than that obtained for humic acid (5.2 x 10-3 mol g-1). Copper ion binding was evaluated at pH 4, 5 and 6 by potentiometric titration with an ion selective electrode for Cu(II). Differential stability constants and complexation capacities were systematically higher for humic acid, despite its lower number of ionizable sites in comparison with fulvic acid.
Resumo:
The performance of proton exchange membrane fuel cells (PEMFC) with Pt-based anodes is drastically lowered when CO-containing hydrogen is used to feed the system, because of the strong adsorption of CO on platinum. In the present work the effects of the presence of a conversion layer of CO to CO2 composed by several M/C materials (where M = Mo, Cu, Fe and W) in gas diffusion anodes formed by Pt catalysts were investigated. The diffusion layers formed by Mo/C e W/C show good CO-tolerance, and this was attributed to the CO removal by parallel occurrence of the water-gas shift reaction and the so-called bifunctional mechanism.
Resumo:
There is presently much interest in the clean and efficient generation of energy by proton exchange membrane fuel cells (PEMFC), using hydrogen as fuel. The generation of hydrogen by the reforming of other fuels, anaerobic fermentation of residual waters and other methods, often produce contaminants that affect the performance of the cell. In this work, the effect of gaseous SO2 and NO2 on the performance of a H2/O2 single PEMFC is studied. The results show that SO2 decreases irreversibly the performance of the cell under operating conditions, while NO2 has a milder effect that allows the recovery of the system.