925 resultados para protein, semiconductor, solar energy
Resumo:
In the last few decades there has been great interest in III-V multijunction solar cells (MJSC) for concentrator applications due to their promise to significantly reduce the cost of electricity. Being formed by series connection of several solar cells with different bandgaps, a key role in a MJSC structure is played by the tunnel junctions (TJ) aimed to implement such series connection. Essentially, tunnel junctions (tunnel diodes or Esaki diodes) are thin, heavily doped p-n junctions where quantum tunneling plays a key role as a conduction mechanism. Such devices were discovered by Nobel laureate Leo Esaki at the end of 1950. The key feature of tunnel junctions for their application in MJSC is that, as long as quantum tunneling is the dominant conduction mechanism, they exhibit a linear I-V dependence until the peak tunneling current (Jp) is reached. This initial ohmic region in the I-V curve is ideal for implementing low-loss interconnections between the subcells with different energy bandgaps that constitute a MJSC.
Resumo:
The annual energy conversion efficiency is calculated for a four junction inverted metamorphic solar cell that has been completely characterized in the laboratory at room temperature using measurements fit to a comprehensive optoelectronic model of the multijunction solar cells. A simple model of the temperature dependence is used redict the performance of the solar cell under varying temperature and spectra characteristic of Golden, CO for an entire year. The annual energy conversion efficiency is calculated by integrating the predicted cell performance over the entire year. The effects of geometric concentration, CPV system thermal characteristics, and luminescent coupling are ighlighted.
Resumo:
A conceptual energy storage system design that utilizes ultra high temperature phase change materials is presented. In this system, the energy is stored in the form of latent heat and converted to electricity upon demand by TPV (thermophotovoltaic) cells. Silicon is considered in this study as PCM (phase change material) due to its extremely high latent heat (1800 J/g or 500 Wh/kg), melting point (1410 C), thermal conductivity (~25 W/mK), low cost (less than $2/kg or $4/kWh) and abundance on earth. The proposed system enables an enormous thermal energy storage density of ~1 MWh/m3, which is 10e20 times higher than that of lead-acid batteries, 2e6 times than that of Li-ion batteries and 5e10 times than that of the current state of the art LHTES systems utilized in CSP (concentrated solar power) applications. The discharge efficiency of the system is ultimately determined by the TPV converter, which theoretically can exceed 50%. However, realistic discharge efficiencies utilizing single junction TPV cells are in the range of 20e45%, depending on the semiconductor bandgap and quality, and the photon recycling efficiency. This concept has the potential to achieve output electric energy densities in the range of 200-450 kWhe/m3, which is comparable to the best performing state of the art Lithium-ion batteries.
Resumo:
The variability of the solar spectra in the field may reduce the annual energy yield of multijunction solar cells. It would, therefore, be desirable to implement a cell design procedure based on the maximization of the annual energy yield. In this study, we present a measurement technique to generate maps of the real performance of the solar cell for a range of light spectrum contents using a solar simulator with a computer-controllable spectral content. These performance maps are demonstrated to be a powerful tool for analyzing the characteristics of any given set of annual spectra representative of a site and their influence on the energy yield of any solar cell. The effect of luminescence coupling on buffering against variations of the spectrum and improving the annual energy yield is demonstrated using this method.
Resumo:
The present study explores a “hydrophobic” energy function for folding simulations of the protein lattice model. The contribution of each monomer to conformational energy is the product of its “hydrophobicity” and the number of contacts it makes, i.e., E(h⃗, c⃗) = −Σi=1N cihi = −(h⃗.c⃗) is the negative scalar product between two vectors in N-dimensional cartesian space: h⃗ = (h1, … , hN), which represents monomer hydrophobicities and is sequence-dependent; and c⃗ = (c1, … , cN), which represents the number of contacts made by each monomer and is conformation-dependent. A simple theoretical analysis shows that restrictions are imposed concomitantly on both sequences and native structures if the stability criterion for protein-like behavior is to be satisfied. Given a conformation with vector c⃗, the best sequence is a vector h⃗ on the direction upon which the projection of c⃗ − c̄⃗ is maximal, where c̄⃗ is the diagonal vector with components equal to c̄, the average number of contacts per monomer in the unfolded state. Best native conformations are suggested to be not maximally compact, as assumed in many studies, but the ones with largest variance of contacts among its monomers, i.e., with monomers tending to occupy completely buried or completely exposed positions. This inside/outside segregation is reflected on an apolar/polar distribution on the corresponding sequence. Monte Carlo simulations in two dimensions corroborate this general scheme. Sequences targeted to conformations with large contact variances folded cooperatively with thermodynamics of a two-state transition. Sequences targeted to maximally compact conformations, which have lower contact variance, were either found to have degenerate ground state or to fold with much lower cooperativity.
Resumo:
The multidimensional free energy surface for a small fast folding helical protein is explored based on first-principle calculations. The model represents the 46-residue segment from fragment B of staphylococcal protein A. The relationship between collapse and tertiary structure formation, and the order of collapse and secondary structure formation, are investigated. We find that the initial collapse process gives rise to a transition state with about 30% of the native tertiary structure and 50–70% of the native helix content. We also observe two distinct distributions of native helix in this collapsed state (Rg ≈ 12 Å), one with about 20% of the native helical hydrogen bonds, the other with near 70%. The former corresponds to a local minimum. The barrier from this metastable state to the native state is about 2 kBT. In the latter case, folding is essentially a downhill process involving topological assembly. In addition, the order of formation of secondary structure among the three helices is examined. We observe cooperative formation of the secondary structure in helix I and helix II. Secondary structure in helix III starts to form following the formation of certain secondary structure in both helix I and helix II. Comparisons of our results with those from theory and experiment are made.
Resumo:
We identified a protein, Aer, as a signal transducer that senses intracellular energy levels rather than the external environment and that transduces signals for aerotaxis (taxis to oxygen) and other energy-dependent behavioral responses in Escherichia coli. Domains in Aer are similar to the signaling domain in chemotaxis receptors and the putative oxygen-sensing domain of some transcriptional activators. A putative FAD-binding site in the N-terminal domain of Aer shares a consensus sequence with the NifL, Bat, and Wc-1 signal-transducing proteins that regulate gene expression in response to redox changes, oxygen, and blue light, respectively. A double mutant deficient in aer and tsr, which codes for the serine chemoreceptor, was negative for aerotaxis, redox taxis, and glycerol taxis, each of which requires the proton motive force and/or electron transport system for signaling. We propose that Aer and Tsr sense the proton motive force or cellular redox state and thereby integrate diverse signals that guide E. coli to environments where maximal energy is available for growth.
Resumo:
We report single-molecule folding studies of a small, single-domain protein, chymotrypsin inhibitor 2 (CI2). CI2 is an excellent model system for protein folding studies and has been extensively studied, both experimentally (at the ensemble level) and theoretically. Conformationally assisted ligation methodology was used to synthesize the proteins and site-specifically label them with donor and acceptor dyes. Folded and denatured subpopulations were observed by fluorescence resonance energy transfer (FRET) measurements on freely diffusing single protein molecules. Properties of these subpopulations were directly monitored as a function of guanidinium chloride concentration. It is shown that new information about different aspects of the protein folding reaction can be extracted from such subpopulation properties. Shifts in the mean transfer efficiencies are discussed, FRET efficiency distributions are translated into potentials, and denaturation curves are directly plotted from the areas of the FRET peaks. Changes in stability caused by mutation also are measured by comparing pseudo wild-type CI2 with a destabilized mutant (K17G). Current limitations and future possibilities and prospects for single-pair FRET protein folding investigations are discussed.
Resumo:
We present a novel type of spectral diffusion experiment in the millikelvin range to characterize the energy landscape of a protein as compared with that of a glass. We measure the time evolution of spectral holes for more than 300 hr after well-defined initial nonequilibrium conditions. We show that the model of noninteracting two-level systems can describe spectral diffusion in the glass, but fails for the protein. Our results further demonstrate that randomness in the energy landscape of a protein shows features of organization. There are “deep minimum” states separated by barriers, the heights of which we are able to estimate. The energy landscape of a glass is featureless by comparison.
Resumo:
The conformational space annealing (CSA) method for global optimization has been applied to the 10-55 fragment of the B-domain of staphylococcal protein A (protein A) and to a 75-residue protein, apo calbindin D9K (PDB ID code 1CLB), by using the UNRES off-lattice united-residue force field. Although the potential was not calibrated with these two proteins, the native-like structures were found among the low-energy conformations, without the use of threading or secondary-structure predictions. This is because the CSA method can find many distinct families of low-energy conformations. Starting from random conformations, the CSA method found that there are two families of low-energy conformations for each of the two proteins, the native-like fold and its mirror image. The CSA method converged to the same low-energy folds in all cases studied, as opposed to other optimization methods. It appears that the CSA method with the UNRES force field, which is based on the thermodynamic hypothesis, can be used in prediction of protein structures in real time.
Resumo:
We have obtained an experimental estimate of the free energy change associated with variations at the interface between protein subunits, a subject that has raised considerable interest since the concept of accessible surface area was introduced by Lee and Richards [Lee, B. & Richards, F. M. (1971) J. Mol. Biol. 55, 379–400]. We determined by analytical ultracentrifugation the dimer–tetramer equilibrium constant of five single and three double mutants of human Hb. One mutation is at the stationary α1β1 interface, and all of the others are at the sliding α1β2 interface where cleavage of the tetramer into dimers and ligand-linked allosteric changes are known to occur. A surprisingly good linear correlation between the change in the free energy of association of the mutants and the change in buried hydrophobic surface area was obtained, after corrections for the energetic cost of losing steric complementarity at the αβ dimer interface. The slope yields an interface stabilization free energy of −15 ± 1.2 cal/mol upon burial of 1 Å2 of hydrophobic surface, in very good agreement with the theoretical estimate given by Eisenberg and McLachlan [Eisenberg, D. & McLachlan, A. D. (1986) Nature (London) 319, 199–203].
Resumo:
Objectives: To determine whether routine oral and enteral nutritional supplementation can improve the weight, anthropometry, and survival of adult patients.
Resumo:
Recent improvements of a hierarchical ab initio or de novo approach for predicting both α and β structures of proteins are described. The united-residue energy function used in this procedure includes multibody interactions from a cumulant expansion of the free energy of polypeptide chains, with their relative weights determined by Z-score optimization. The critical initial stage of the hierarchical procedure involves a search of conformational space by the conformational space annealing (CSA) method, followed by optimization of an all-atom model. The procedure was assessed in a recent blind test of protein structure prediction (CASP4). The resulting lowest-energy structures of the target proteins (ranging in size from 70 to 244 residues) agreed with the experimental structures in many respects. The entire experimental structure of a cyclic α-helical protein of 70 residues was predicted to within 4.3 Å α-carbon (Cα) rms deviation (rmsd) whereas, for other α-helical proteins, fragments of roughly 60 residues were predicted to within 6.0 Å Cα rmsd. Whereas β structures can now be predicted with the new procedure, the success rate for α/β- and β-proteins is lower than that for α-proteins at present. For the β portions of α/β structures, the Cα rmsd's are less than 6.0 Å for contiguous fragments of 30–40 residues; for one target, three fragments (of length 10, 23, and 28 residues, respectively) formed a compact part of the tertiary structure with a Cα rmsd less than 6.0 Å. Overall, these results constitute an important step toward the ab initio prediction of protein structure solely from the amino acid sequence.
Resumo:
The hierarchical properties of potential energy landscapes have been used to gain insight into thermodynamic and kinetic properties of protein ensembles. It also may be possible to use them to direct computational searches for thermodynamically stable macroscopic states, i.e., computational protein folding. To this end, we have developed a top-down search procedure in which conformation space is recursively dissected according to the intrinsic hierarchical structure of a landscape's effective-energy barriers. This procedure generates an inverted tree similar to the disconnectivity graphs generated by local minima-clustering methods, but it fundamentally differs in the manner in which the portion of the tree that is to be computationally explored is selected. A key ingredient is a branch-selection algorithm that takes advantage of statistically predictive properties of the landscape to guide searches down the tree branches that are most likely to lead to the physically relevant macroscopic states. Using the computational folding of a β-hairpin-forming peptide as an example, we show that such predictive properties indeed exist and can be used for structure prediction by free-energy global minimization.
Resumo:
We present a method (ENERGI) for extracting energy-like quantities from a data base of protein structures. In this paper, we use the method to generate pairwise additive amino acid "energy" scores. These scores are obtained by iteration until they correctly discriminate a set of known protein folds from decoy conformations. The method succeeds in lattice model tests and in the gapless threading problem as defined by Maiorov and Crippen [Maiorov, V. N. & Crippen, G. M. (1992) J. Mol. Biol. 227, 876-888]. A more challenging test of threading a larger set of test proteins derived from the representative set of Hobohm and Sander [Hobohm, U. & Sander, C. (1994) Protein Sci. 3, 522-524] is used as a "workbench" for exploring how the ENERGI scores depend on their parameter sets.