960 resultados para projection package
Resumo:
This Technology Governance Board Annual Report provides information on the FY08 – FY12 Information Technology Personnel Spending; FY08 – FY12 Technology Equipment and Services Spending; and FY08 – FY12 Internal IT Expenditures with the Iowa Communications Network and Department of Administrative Services - Information Technology Enterprise. The report also contains a projection of technology cost savings. This report was produced in compliance with Iowa Code §8A.204(3a) and was submitted to the Governor, the Department of Management, and the General Assembly on January 10, 2011.
Resumo:
My research in live drawing and new technologies uses a combination of a human figure in live in composition, overlaid with a digital projection of a second human figure. The aim is to explore, to amplify and thoroughly analyse the search for distinctive identities and graphic languages of representation for live and projected models.
Resumo:
Among the types of remote sensing acquisitions, optical images are certainly one of the most widely relied upon data sources for Earth observation. They provide detailed measurements of the electromagnetic radiation reflected or emitted by each pixel in the scene. Through a process termed supervised land-cover classification, this allows to automatically yet accurately distinguish objects at the surface of our planet. In this respect, when producing a land-cover map of the surveyed area, the availability of training examples representative of each thematic class is crucial for the success of the classification procedure. However, in real applications, due to several constraints on the sample collection process, labeled pixels are usually scarce. When analyzing an image for which those key samples are unavailable, a viable solution consists in resorting to the ground truth data of other previously acquired images. This option is attractive but several factors such as atmospheric, ground and acquisition conditions can cause radiometric differences between the images, hindering therefore the transfer of knowledge from one image to another. The goal of this Thesis is to supply remote sensing image analysts with suitable processing techniques to ensure a robust portability of the classification models across different images. The ultimate purpose is to map the land-cover classes over large spatial and temporal extents with minimal ground information. To overcome, or simply quantify, the observed shifts in the statistical distribution of the spectra of the materials, we study four approaches issued from the field of machine learning. First, we propose a strategy to intelligently sample the image of interest to collect the labels only in correspondence of the most useful pixels. This iterative routine is based on a constant evaluation of the pertinence to the new image of the initial training data actually belonging to a different image. Second, an approach to reduce the radiometric differences among the images by projecting the respective pixels in a common new data space is presented. We analyze a kernel-based feature extraction framework suited for such problems, showing that, after this relative normalization, the cross-image generalization abilities of a classifier are highly increased. Third, we test a new data-driven measure of distance between probability distributions to assess the distortions caused by differences in the acquisition geometry affecting series of multi-angle images. Also, we gauge the portability of classification models through the sequences. In both exercises, the efficacy of classic physically- and statistically-based normalization methods is discussed. Finally, we explore a new family of approaches based on sparse representations of the samples to reciprocally convert the data space of two images. The projection function bridging the images allows a synthesis of new pixels with more similar characteristics ultimately facilitating the land-cover mapping across images.
Resumo:
The study of the thermal behavior of complex packages as multichip modules (MCM¿s) is usually carried out by measuring the so-called thermal impedance response, that is: the transient temperature after a power step. From the analysis of this signal, the thermal frequency response can be estimated, and consequently, compact thermal models may be extracted. We present a method to obtain an estimate of the time constant distribution underlying the observed transient. The method is based on an iterative deconvolution that produces an approximation to the time constant spectrum while preserving a convenient convolution form. This method is applied to the obtained thermal response of a microstructure as analyzed by finite element method as well as to the measured thermal response of a transistor array integrated circuit (IC) in a SMD package.
Resumo:
SUMMARY: ExpressionView is an R package that provides an interactive graphical environment to explore transcription modules identified in gene expression data. A sophisticated ordering algorithm is used to present the modules with the expression in a visually appealing layout that provides an intuitive summary of the results. From this overview, the user can select individual modules and access biologically relevant metadata associated with them. AVAILABILITY: http://www.unil.ch/cbg/ExpressionView. Screenshots, tutorials and sample data sets can be found on the ExpressionView web site.
Resumo:
Phase sensitive X-ray imaging methods can provide substantially increased contrast over conventional absorption-based imaging and therefore new and otherwise inaccessible information. The use of gratings as optical elements in hard X-ray phase imaging overcomes some of the problems that have impaired the wider use of phase contrast in X-ray radiography and tomography. So far, to separate the phase information from other contributions detected with a grating interferometer, a phase-stepping approach has been considered, which implies the acquisition of multiple radiographic projections. Here we present an innovative, highly sensitive X-ray tomographic phase-contrast imaging approach based on grating interferometry, which extracts the phase-contrast signal without the need of phase stepping. Compared to the existing phase-stepping approach, the main advantages of this new method dubbed "reverse projection" are not only the significantly reduced delivered dose, without the degradation of the image quality, but also the much higher efficiency. The new technique sets the prerequisites for future fast and low-dose phase-contrast imaging methods, fundamental for imaging biological specimens and in vivo studies.
Resumo:
This paper provides an axiomatic framework to compare the D-core (the set of undominatedimputations) and the core of a cooperative game with transferable utility. Theorem1 states that the D-core is the only solution satisfying projection consistency, reasonableness (from above), (*)-antimonotonicity, and modularity. Theorem 2 characterizes the core replacing (*)-antimonotonicity by antimonotonicity. Moreover, these axioms alsocharacterize the core on the domain of convex games, totally balanced games, balancedgames, and superadditive games
Resumo:
Fractal mathematics has been used to characterize water and solute transport in porous media and also to characterize and simulate porous media properties. The objective of this study was to evaluate the correlation between the soil infiltration parameters sorptivity (S) and time exponent (n) and the parameters dimension (D) and the Hurst exponent (H). For this purpose, ten horizontal columns with pure (either clay or loam) and heterogeneous porous media (clay and loam distributed in layers in the column) were simulated following the distribution of a deterministic Cantor Bar with fractal dimension H" 0.63. Horizontal water infiltration experiments were then simulated using Hydrus 2D software. The sorptivity (S) and time exponent (n) parameters of the Philip equation were estimated for each simulation, using the nonlinear regression procedure of the statistical software package SAS®. Sorptivity increased in the columns with the loam content, which was attributed to the relation of S with the capillary radius. The time exponent estimated by nonlinear regression was found to be less than the traditional value of 0.5. The fractal dimension estimated from the Hurst exponent was 17.5 % lower than the fractal dimension of the Cantor Bar used to generate the columns.
Resumo:
BACKGROUND: Qualitative frameworks, especially those based on the logical discrete formalism, are increasingly used to model regulatory and signalling networks. A major advantage of these frameworks is that they do not require precise quantitative data, and that they are well-suited for studies of large networks. While numerous groups have developed specific computational tools that provide original methods to analyse qualitative models, a standard format to exchange qualitative models has been missing. RESULTS: We present the Systems Biology Markup Language (SBML) Qualitative Models Package ("qual"), an extension of the SBML Level 3 standard designed for computer representation of qualitative models of biological networks. We demonstrate the interoperability of models via SBML qual through the analysis of a specific signalling network by three independent software tools. Furthermore, the collective effort to define the SBML qual format paved the way for the development of LogicalModel, an open-source model library, which will facilitate the adoption of the format as well as the collaborative development of algorithms to analyse qualitative models. CONCLUSIONS: SBML qual allows the exchange of qualitative models among a number of complementary software tools. SBML qual has the potential to promote collaborative work on the development of novel computational approaches, as well as on the specification and the analysis of comprehensive qualitative models of regulatory and signalling networks.
Resumo:
Background: TIDratio indirectly reflects myocardial ischemia and is correlated with cardiacprognosis. We aimed at comparing the influence of three different softwarepackages for the assessment of TID using Rb-82 cardiac PET/CT. Methods: Intotal, data of 30 patients were used based on normal myocardial perfusion(SSS<3 and SRS<3) and stress myocardial blood flow 2mL/min/g)assessed by Rb-82 cardiac PET/CT. After reconstruction using 2D OSEM (2Iterations, 28 subsets), 3-D filtering (Butterworth, order=10, ωc=0.5), data were automatically processed, and then manually processed fordefining identical basal and apical limits on both stress and rest images.TIDratio were determined with Myometrix®, ECToolbox® and QGS®software packages. Comparisons used ANOVA, Student t-tests and Lin concordancetest (ρc). Results: All of the 90 processings were successfullyperformed. TID ratio were not statistically different between software packageswhen data were processed automatically (P=0.2) or manually (P=0.17). There was a slight, butsignificant relative overestimation of TID with automatic processing incomparison to manual processing using ECToolbox® (1.07 ± 0.13 vs 1.0± 0.13, P=0.001)and Myometrix® (1.07 ± 0.15 vs 1.01 ± 0.11, P=0.003) but not using QGS®(1.02 ±0.12 vs 1.05 ± 0.11, P=0.16). The best concordance was achieved between ECToolbox®and Myometrix® manual (ρc=0.67) processing.Conclusion: Using automatic or manual mode TID estimation was not significantlyinfluenced by software type. Using Myometrix® or ECToolbox®TID was significantly different between automatic and manual processing, butnot using QGS®. Software package should be account for when definingTID normal reference limits, as well as when used in multicenter studies. QGS®software seemed to be the most operator-independent software package, whileECToolbox® and Myometrix® produced the closest results.
Resumo:
The optimization of the extremity dosimetry of medical staff in nuclear medicine was the aim of the Work Package 4 (WP4) of the ORAMED project, a Collaborative Project (2008-2011) supported by the European Commission within its 7th Framework Programme. Hand doses and dose distributions across the hands of medical staff working in nuclear medicine departments were evaluated through an extensive measurement program involving 32 hospitals in Europe and 139 monitored workers. The study included the most frequently used radionuclides, (99m)Tc- and (18)F-labelled radiopharmaceuticals for diagnostic and (90)Y-labelled Zevalin (R) and DOTATOC for therapy. Furthermore, Monte Carlo simulations were performed in different predefined scenarios to evaluate separately the efficacy of different radiation protection measures by comparing hand dose distributions according to various parameters. The present work gives recommendations based on results obtained with both measurements and simulations. This results in nine practical recommendations regarding the positioning of the dosemeters for an appropriate skin dose monitoring and the best protection means to reduce the personnel exposure.
Resumo:
The basic photosynthetic unit containing the reaction centre and the light-harvesting I complex (RC-LHI) of the purple non-sulphur bacterium Rhodospirillum rubrum was purified and reconstituted into two-dimensional (2D) membrane crystals. Transmission electron microscopy using conventional techniques and cryoelectron microscopy of the purified single particles and of 2D crystals yielded a projection of the RC-LHI complex at a resolution of at least 1.6 nm. In this projection the LHI ring appears to have a square symmetry and packs in a square crystal lattice. The square geometry of the LHI ring was observed also in images of single isolated particles of the RC-LHI complex. However, although the LHI units are packed identically within the crystal lattice, a new rotational analysis developed here showed that the reaction centres take up one of four possible orientations within the ring. This fourfold disorder supports our interpretation of a square ring symmetry and suggests that a hitherto undetected component may be present within the photosynthetic unit.
Resumo:
Results for elastic electron scattering by nuclei, calculated with charge densities of Skyrme forces and covariant effective Lagrangians that accurately describe nuclear ground states, are compared against experiment in stable isotopes. Dirac partial-wave calculations are performed with an adapted version of the ELSEPA package. Motivated by the fact that studies of electron scattering off exotic nuclei are intended in future facilities in the commissioned GSI and RIKEN upgrades, we survey the theoretical predictions from neutron-deficient to neutron-rich isotopes in the tin and calcium isotopic chains. The charge densities of a covariant interaction that describes the low-energy electromagnetic structure of the nucleon within the Lagrangian of the theory are used to this end. The study is restricted to medium- and heavy-mass nuclei because the charge densities are computed in mean-field approach. Because the experimental analysis of scattering data commonly involves parameterized charge densities, as a surrogate exercise for the yet unexplored exotic nuclei, we fit our calculated mean-field densities with Helm model distributions. This procedure turns out to be helpful to study the neutron-number variation of the scattering observables and allows us to identify correlations of potential interest among some of these observables within the isotopic chains.
Resumo:
In advance of the 2012 legislative session, I am pleased to provide for your review this legislative brief on Gov. Terry E. Branstad’s and Lt. Gov. Kim Reynolds’ education reform package. The purpose is to provide a broad overview of the components of the package, give some examples of where similar approaches are in place, and provide cost estimates. In collaboration with the Governor’s Office, the staff at the Iowa Department of Education and I have worked intensively to prepare a set of legislative proposals worthy of careful consideration. I believe this package puts us on the path to our unshakable vision of having one of the best school systems in the world. Iowa’s children deserve nothing less.
Resumo:
Introduction: Human experience takes place in the line of mental-time (MT) created through imagination of oneself in different time-points in past or future (self-projection in time). Here we manipulated self-projection in MT not only with respect to one's life-events but also with respect to one's faces from different past and future time-points. Methods: We here compared MTT with respect to one's facial images from different time points in past and future (study 1: MT-faces) as well as with respect to different past and future life events (study 2: MT-events). Participants were asked to make judgments about past and future face images and past and future events from three different time-points: the present (Now), eight years earlier (Past) or eight years later (Future). In addition, as a control task participants were asked to make recognition judgments with respect to faces and memory-related judgments with respect to events without changing their habitual self-location in time. Behavioral measures and functional magnetic resonance imaging (fMRI) activity after subtraction of recognition and memory related activities show both absolute MT and relative MT effects for faces and events, signifying a fundamental brain mechanism of MT, disentangled from episodic memory functions. Results: Behavioural and event-related fMRI activity showed three independent effects characterized by (1) similarity between past recollection and future imagination, (2) facilitation of judgments related to the future as compared to the past, and (3) facilitation of judgments related to time-points distant from the present. These effects were found with respect to faces and events suggesting that the brain mechanisms of MT are independent of whether actual life episodes have to be re-/pre-experienced and recruited a common cerebral network including the medial-temporal, precuneus, inferior-frontal, temporo-parietal, and insular cortices. Conclusions: These behavioural and neural data suggest that self-projection in time is a crucial aspect of MT, relying on neural structures encoding memory, mental imagery, and self. Furthermore our results emphasize the idea that mental temporal processing is more strongly directed to future prediction than to past recollection.