909 resultados para process concentrated work
Resumo:
This thesis is an exploration of the social and political processes involved in the introduction of new technology to the shopfloor. Through a series of case studies of applications of microelectronics to batch manufacture, it attempts to uncover the ways in which the values and interests of managers, engineers, workers and others profoundly influence the choice and use of technology, and thus the work organisation which emerges. Previous analyses have tended to treat new technology as if it had "impacts" on work organisation - especially skills - which are inevitable in particular technical and economic circumstances. It is in opposition to this view that technical change is here treated as a matter for social choice and political negotiation, the various interested parties to the change being shown to attempt to incorporate their own interests into the technical and social organisation of work. Section one provides the relevant background to the case studies by summarising and criticising previous theoretical and empirical work in the area. The inadequacies of this work for our concerns are drawn out, and the need for detailed studies of the political aspects of technical change is justified. The case studies are presented in section two as a set of "episodes" of innovation, and section three analyses the empirical findings. The innovations are compared and contrasted in order to illustrate the social and political dynamics involved in the various stages of the innovation process. Finally some comments are made on policy issues for which the research has important implications.
Resumo:
Initially this thesis examines the various mechanisms by which technology is acquired within anodizing plants. In so doing the history of the evolution of anodizing technology is recorded, with particular reference to the growth of major markets and to the contribution of the marketing efforts of the aluminium industry. The business economics of various types of anodizing plants are analyzed. Consideration is also given to the impact of developments in anodizing technology on production economics and market growth. The economic costs associated with work rejected for process defects are considered. Recent changes in the industry have created conditions whereby information technology has a potentially important role to play in retaining existing knowledge. One such contribution is exemplified by the expert system which has been developed for the identification of anodizing process defects. Instead of using a "rule-based" expert system, a commercial neural networks program has been adapted for the task. The advantages of neural networks over 'rule-based' systems is that they are better suited to production problems, since the actual conditions prevailing when the defect was produced are often not known with certainty. In using the expert system, the user first identifies the process stage at which the defect probably occurred and is then directed to a file enabling the actual defects to be identified. After making this identification, the user can consult a database which gives a more detailed description of the defect, advises on remedial action and provides a bibliography of papers relating to the defect. The database uses a proprietary hypertext program, which also provides rapid cross-referencing to similar types of defect. Additionally, a graphics file can be accessed which (where appropriate) will display a graphic of the defect on screen. A total of 117 defects are included, together with 221 literature references, supplemented by 48 cross-reference hyperlinks. The main text of the thesis contains 179 literature references. (DX186565)
Resumo:
The work described in this thesis focuses on the use of a design-of-experiments approach in a multi-well mini-bioreactor to enable the rapid establishments of high yielding production phase conditions in yeast, which is an increasingly popular host system in both academic and industrial laboratories. Using green fluorescent protein secreted from the yeast, Pichia pastoris, a scalable predictive model of protein yield per cell was derived from 13 sets of conditions each with three factors (temperature, pH and dissolved oxygen) at 3 levels and was directly transferable to a 7 L bioreactor. This was in clear contrast to the situation in shake flasks, where the process parameters cannot be tightly controlled. By further optimisating both the accumulation of cell density in batch and improving the fed-batch induction regime, additional yield improvement was found to be additive to the per cell yield of the model. A separate study also demonstrated that improving biomass improved product yield in a second yeast species, Saccharomyces cerevisiae. Investigations of cell wall hydrophobicity in high cell density P. pastoris cultures indicated that cell wall hydrophobin (protein) compositional changes with growth phase becoming more hydrophobic in log growth than in lag or stationary phases. This is possibly due to an increased occurrence of proteins associated with cell division. Finally, the modelling approach was validated in mammalian cells, showing its flexibility and robustness. In summary, the strategy presented in this thesis has the benefit of reducing process development time in recombinant protein production, directly from bench to bioreactor.
Resumo:
The conventional design of forming rolls depends heavily on the individual skill of roll designers which is based on intuition and knowledge gained from previous work. Roll design is normally a trial an error procedure, however with the progress of computer technology, CAD/CAM systems for the cold roll-forming industry have been developed. Generally, however, these CAD systems can only provide a flower pattern based on the knowledge obtained from previously successful flower patterns. In the production of ERW (Electric Resistance Welded) tube and pipe, the need for a theoretical simulation of the roll-forming process, which can not only predict the occurrence of the edge buckling but also obtain the optimum forming condition, has been recognised. A new simulation system named "CADFORM" has been devised that can carry out the consistent forming simulation for this tube-making process. The CADFORM system applied an elastic-plastic stress-strain analysis and evaluate edge buckling by using a simplified model of the forming process. The results can also be visualised graphically. The calculated longitudinal strain is obtained by considering the deformation of lateral elements and takes into account the reduction in strains due to the fin-pass roll. These calculated strains correspond quite well with the experimental results. Using the calculated strains, the stresses in the strip can be estimated. The addition of the fin-pass roll reduction significantly reduces the longitudinal compressive stress and therefore effectively suppresses edge buckling. If the calculated longitudinal stress is controlled, by altering the forming flower pattern so it does not exceed the buckling stress within the material, then the occurrence of edge buckling can be avoided. CADFORM predicts the occurrence of edge buckling of the strip in tube-making and uses this information to suggest an appropriate flower pattern and forming conditions which will suppress the occurrence of the edge buckling.
Resumo:
The right manufacturing technology at the right time can enable an organisation to produce products that are cheaper, better, and made faster than those of the competition. Paradoxically, the wrong technology, or even the right technology poorly implemented, can be disastrous. The decision process through which practitioners acquire manufacturing technologies can significantly impact on their eventual capabilities and performance. This complete process has unfortunately received limited attention in previous studies. Therefore, the work presented in this paper has investigated leading research and industrial practices to create a formal and rational decision process, and then evaluated this through an extended and in-depth case study of a manufacturing technology acquisition. An analysis of previous literature, industrial practices, and the resulting decision process are all presented in this paper.
Resumo:
Purpose – There appears to be an ever-insatiable demand from markets for organisations to improve their products and services. To meet this, there is a need to provide business process improvement (BPI) methodologies that are holistic, structured and procedural. Therefore, this paper describes research that has formed and tested a generic and practical methodology termed model-based and integrated process improvement (MIPI) to support the implementation of BPI; and to validate its effectiveness in organisations. This methodology has been created as an aid for practitioners within organisations. Design/methodology/approach – The research objectives were achieved by: reviewing and analysing current methodologies, and selecting a few frameworks against key performance indicators. Using a refined Delphi approach and semi-structured interview with the “experts” in the field. Intervention, case study and process research approach to evaluating a methodology. Findings – The BPI methodology was successfully formed and applied by the researcher and directly by the companies involved against the criteria of feasibility, usability and usefulness. Research limitations/implications – The paper has demonstrated a new knowledge on how to systematically assess a BPI methodology in practice. Practical implications – Model-based and integrated process improvement methodology (MIPI) methodology offers the practitioner (experienced and novice) a set of step-by-step aids necessary to make informed, consistent and efficient changes to business processes. Originality/value – The novelty of this research work is the creation of a holistic workbook-based methodology with relevant tools and techniques. It extends the capabilities of existing methodologies.
Resumo:
The role of interest and agency in the creation and transformation of institutions, in particular the “paradox of embedded agency” (Seo & Creed, 2002) have long puzzled institutional scholars. Most recently, Lawrence and Suddaby (2006) coined the term “institutional work” to describe various strategies for creating, maintaining and disrupting institutions. This label, while useful to integrate existing research, highlights institutionalists’ lack of attention to work as actors’ everyday occupational tasks and activities. Thus, the objective of this study is to take institutional work literally and ask: How does practical work come to constitute institutional work? Drawing on concepts of “situated change” (Orlikowski, 1996) I supplement existing macro-level perspectives of change with a microscopic, practice-based alternative. I examine the everyday work of English and German banking lawyers in a global law firm. Located at the intersection of local laws, international financial markets, commercial logics and professional norms, banking lawyers’ work regularly bridges different normative settings. Hence, they must constructively negotiate contradictory meanings, practices and logics to develop shared routines that resonate with different normative frameworks and facilitate task accomplishment. Based on observation and interview data, the paper distils a process model of banking transac-tions that highlights the critical interfaces forcing English and German banking lawyers into cross-border sensemaking. It distinguishes two accounts of cross-border sensemaking: the “old story” in which contradictory practices and norms collide and the “new story” of a synthetic set of practices for collaboratively “editing” (Sahlin-Andersson, 1996) legal documentation. Data show how new practices gain shape and legitimacy over a series of dialectic contests unfolding at work and how, in turn, these contests shift institutional logics as lawyers ‘get the deal done’. These micro-mechanisms suggest that as practical and institutional work blend, everyday work-ing practices come to constitute a form of institutional agency that is situated, emergent, dialectic and, therefore, embedded.
Resumo:
This research addressed the question: "Which factors predict the effectiveness of healthcare teams?" It was addressed by assessing the psychometric properties of a new measure of team functioning with the use of data collected from 797 team members in 61 healthcare teams. This new measure is the Aston Team Performance Inventory (ATPI) developed by West, Markiewicz and Dawson (2005) and based on the IPO model. The ATPI was pilot tested in order to examine the reliability of this measure in the Jordanian cultural context. A sample of five teams comprising 3-6 members each was randomly selected from the Jordan Red Crescent health centers in Amman. Factors that predict team effectiveness were explored in a Jordanian sample (comprising 1622 members in 277 teams with 255 leaders from healthcare teams in hospitals in Amman) using self-report and Leader Ratings measures adapted from work by West, Borrill et al (2000) to determine team effectiveness and innovation from the leaders' point of view. The results demonstrate the validity and reliability of the measures for use in healthcare settings. Team effort and skills and leader managing had the strongest association with team processes in terms of team objectives, reflexivity, participation, task focus, creativity and innovation. Team inputs in terms of task design, team effort and skills, and organizational support were associated with team effectiveness and innovation whereas team resources were associated only with team innovation. Team objectives had the strongest mediated and direct association with team effectiveness whereas task focus had the strongest mediated and direct association with team innovation. Finally, among leadership variables, leader managing had the strongest association with team effectiveness and innovation. The theoretical and practical implications of this thesis are that: team effectiveness and innovation are influenced by multiple factors that must all be taken into account. The key factors managers need to ensure are in place for effective teams are team effort and skills, organizational support and team objectives. To conclude, the application of these findings to healthcare teams in Jordan will help improve their team effectiveness, and thus the healthcare services that they provide.
Resumo:
Aquatic biomass is seen as one of the major feedstocks to overcome difficulties associated with 1st generation biofuels, such as competition with food production, change of land use and further environmental issues. Although, this finding is widely accepted only little work has been carried out to investigate thermo-chemical conversion of algal specimen to produce biofuels, power and heat. This work aims at contributing fundamental knowledge for thermo-chemical processing of aquatic biomass via intermediate pyrolysis. Therefore, it was necessary to install and commission an analytical pyrolysis apparatus which facilitates intermediate pyrolysis process conditions as well as subsequent separation and detection of pyrolysates (Py- GC/MS). In addition, a methodology was established to analyse aquatic biomass under intermediate conditions by Thermo-Gravimetric Analysis (TGA). Several microalgae (e.g. Chlamydomonas reinhardtii, Chlorella vulgaris) and macroalgae specimen (e.g. Fucus vesiculosus) from main algal divisions and various natural habitats (fresh and saline water, temperate and polar climates) were chosen and their thermal degradation under intermediate pyrolysis conditions was studied. In addition, it was of interest to examine the contribution of biochemical constituents of algal biomass onto the chemical compounds contained in pyrolysates. Therefore, lipid and protein fractions were extracted from microalgae biomass and analysed separately. Furthermore, investigations of residual algal materials obtained by extraction of high valuable compounds (e.g. lipids, proteins, enzymes) were included to evaluate their potential for intermediate pyrolysis processing. On basis of these thermal degradation studies, possible applications of algal biomass and from there derived materials in the Bio-thermal Valorisation of Biomass-process (BtVB-process) are presented. It was of interest to evaluate the combination of the production of high valuable products and bioenergy generation derived by micro- and macro algal biomass.