901 resultados para probabilistic roadmap


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent work in the area of probabilistic user simulation for training statistical dialogue managers has investigated a new agenda-based user model and presented preliminary experiments with a handcrafted model parameter set. Training the model on dialogue data is an important next step, but non-trivial since the user agenda states are not observable in data and the space of possible states and state transitions is intractably large. This paper presents a summary-space mapping which greatly reduces the number of state transitions and introduces a tree-based method for representing the space of possible agenda state sequences. Treating the user agenda as a hidden variable, the forward/backward algorithm can then be successfully applied to iteratively estimate the model parameters on dialogue data. © 2007 Association for Computational Linguistics.