903 resultados para poly-3-hydroxybutyrate


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports on the thermal behavior and mechanical properties of nanocomposites based on unsaturated polyester resin (UP) modified with poly(ɛ-caprolactone) (PCL) and reinforced with an organically modified clay (cloisite 30B). To optimize the dispersion of 30B and the mixing of PCL in the UP resin, two different methods were employed to prepare crosslinked UP–PCL-30B hybrid nanocomposites. Besides, two samples of poly(ɛ-caprolactone) of different molecular weight (PCL2: Mn = 2.103g.mol−1 and PCL50: Mn = 5.104g.mol−1) were used at several concentrations (4, 6, 10 wt%). The 30B concentration was 4 wt% in all the nanocomposites. The morphology of the samples was studied by scanning electron microscopy (SEM). The analysis of X-ray patterns reveals that intercalated structures have been found for all ternary nanocomposites, independently of the molecular weight, PCL concentration and the preparation method selected. A slight rise of the glass transition temperature, Tg, is observed in UP/PCL/4%30B ternary nanocomposites regarding to neat UP. The analysis of the tensile properties of the ternary (hybrid) systems indicates that UP/4%PCL2/4%30B nanocomposite improves the tensile strength and elongation at break respect to the neat UP while the Young modulus remains constant

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neurotoxicity induced by overstimulation of N-methyl-d-aspartate (NMDA) receptors is due, in part, to a sustained rise in intracellular Ca2+; however, little is known about the ensuing intracellular events that ultimately result in cell death. Here we show that overstimulation of NMDA receptors by relatively low concentrations of glutamate induces apoptosis of cultured cerebellar granule neurons (CGNs) and that CGNs do not require new RNA or protein synthesis. Glutamate-induced apoptosis of CGNs is, however, associated with a concentration- and time-dependent activation of the interleukin 1β-converting enzyme (ICE)/CED-3-related protease, CPP32/Yama/apopain (now designated caspase 3). Further, the time course of caspase 3 activation after glutamate exposure of CGNs parallels the development of apoptosis. Moreover, glutamate-induced apoptosis of CGNs is almost completely blocked by the selective cell permeable tetrapeptide inhibitor of caspase 3, Ac-DEVD-CHO but not by the ICE (caspase 1) inhibitor, Ac-YVAD-CHO. Western blots of cytosolic extracts from glutamate-exposed CGNs reveal both cleavage of the caspase 3 substrate, poly(ADP-ribose) polymerase, as well as proteolytic processing of pro-caspase 3 to active subunits. Our data demonstrate that glutamate-induced apoptosis of CGNs is mediated by a posttranslational activation of the ICE/CED-3-related cysteine protease caspase 3.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Communication between the 5′ and 3′ ends is a common feature of several aspects of eukaryotic mRNA metabolism. In the nucleus, the pre-mRNA 5′ end is bound by the nuclear cap binding complex (CBC). This RNA–protein complex plays an active role in both splicing and RNA export. We provide evidence for participation of CBC in the processing of the 3′ end of the message. Depletion of CBC from HeLa cell nuclear extract strongly reduced the endonucleolytic cleavage step of the cleavage and polyadenylation process. Cleavage was restored by addition of recombinant CBC. CBC depletion was found to reduce the stability of poly(A) site cleavage complexes formed in nuclear extract. We also provide evidence that the communication between the 5′ and 3′ ends of the pre-mRNA during processing is mediated by the physical association of the CBC/cap complex with 3′ processing factors bound at the poly(A) site. These observations, along with previous data on the function of CBC in splicing, illustrate the key role played by CBC in pre-mRNA recognition and processing. The data provides further support for the hypothesis that pre-mRNAs and mRNAs may exist and be functional in the form of “closed-loops,” due to interactions between factors bound at their 5′ and 3′ ends.