958 resultados para pixel detector
Resumo:
Spectrum sensing is considered to be one of the most important tasks in cognitive radio. One of the common assumption among current spectrum sensing detectors is the full presence or complete absence of the primary user within the sensing period. In reality, there are many situations where the primary user signal only occupies a portion of the observed signal and the assumption of primary user duty cycle not necessarily fulfilled. In this paper we show that the true detection performance can degrade from the assumed achievable values when the observed primary user exhibits a certain duty cycle. Therefore, a two-stage detection method incorporating primary user duty cycle that enhances the detection performance is proposed. The proposed detector can improve the probability of detection under low duty cycle at the expense of a small decrease in performance at high duty cycle.
Resumo:
In this paper we use a sequence-based visual localization algorithm to reveal surprising answers to the question, how much visual information is actually needed to conduct effective navigation? The algorithm actively searches for the best local image matches within a sliding window of short route segments or 'sub-routes', and matches sub-routes by searching for coherent sequences of local image matches. In contract to many existing techniques, the technique requires no pre-training or camera parameter calibration. We compare the algorithm's performance to the state-of-the-art FAB-MAP 2.0 algorithm on a 70 km benchmark dataset. Performance matches or exceeds the state of the art feature-based localization technique using images as small as 4 pixels, fields of view reduced by a factor of 250, and pixel bit depths reduced to 2 bits. We present further results demonstrating the system localizing in an office environment with near 100% precision using two 7 bit Lego light sensors, as well as using 16 and 32 pixel images from a motorbike race and a mountain rally car stage. By demonstrating how little image information is required to achieve localization along a route, we hope to stimulate future 'low fidelity' approaches to visual navigation that complement probabilistic feature-based techniques.
In the pursuit of effective affective computing : the relationship between features and registration
Resumo:
For facial expression recognition systems to be applicable in the real world, they need to be able to detect and track a previously unseen person's face and its facial movements accurately in realistic environments. A highly plausible solution involves performing a "dense" form of alignment, where 60-70 fiducial facial points are tracked with high accuracy. The problem is that, in practice, this type of dense alignment had so far been impossible to achieve in a generic sense, mainly due to poor reliability and robustness. Instead, many expression detection methods have opted for a "coarse" form of face alignment, followed by an application of a biologically inspired appearance descriptor such as the histogram of oriented gradients or Gabor magnitudes. Encouragingly, recent advances to a number of dense alignment algorithms have demonstrated both high reliability and accuracy for unseen subjects [e.g., constrained local models (CLMs)]. This begs the question: Aside from countering against illumination variation, what do these appearance descriptors do that standard pixel representations do not? In this paper, we show that, when close to perfect alignment is obtained, there is no real benefit in employing these different appearance-based representations (under consistent illumination conditions). In fact, when misalignment does occur, we show that these appearance descriptors do work well by encoding robustness to alignment error. For this work, we compared two popular methods for dense alignment-subject-dependent active appearance models versus subject-independent CLMs-on the task of action-unit detection. These comparisons were conducted through a battery of experiments across various publicly available data sets (i.e., CK+, Pain, M3, and GEMEP-FERA). We also report our performance in the recent 2011 Facial Expression Recognition and Analysis Challenge for the subject-independent task.
Resumo:
When wheels pass over insulated rail joints (IRJs) a vertical impact force is generated. The ability to measure the impact force is valuable as the force signature helps understand the behaviour of the IRJs, in particular their potential for failure. The impact forces are thought to be one of the main factors that cause damage to the IRJ and track components. Study of the deterioration mechanism helps finding new methods to improve the service life of IRJs in track. In this research, the strain-gage-based wheel load detector, for the first time, is employed to measure the wheel–rail contact-impact force at an IRJ in a heavy haul rail line. In this technique, the strain gages are installed within the IRJ assembly without disturbing the structural integrity of IRJ and arranged in a full wheatstone bridge to form a wheel load detector. The instrumented IRJ is first tested and calibrated in the lab and then installed in the field. For comparison purposes, a reference rail section is also instrumented with the same strain gage pattern as the IRJ. In this paper the measurement technique, the process of instrumentation, and tests as well as some typical data obtained from the field and the inferences are presented.
Resumo:
Cognitive radio is an emerging technology proposing the concept of dynamic spec- trum access as a solution to the looming problem of spectrum scarcity caused by the growth in wireless communication systems. Under the proposed concept, non- licensed, secondary users (SU) can access spectrum owned by licensed, primary users (PU) so long as interference to PU are kept minimal. Spectrum sensing is a crucial task in cognitive radio whereby the SU senses the spectrum to detect the presence or absence of any PU signal. Conventional spectrum sensing assumes the PU signal as ‘stationary’ and remains in the same activity state during the sensing cycle, while an emerging trend models PU as ‘non-stationary’ and undergoes state changes. Existing studies have focused on non-stationary PU during the transmission period, however very little research considered the impact on spectrum sensing when the PU is non-stationary during the sensing period. The concept of PU duty cycle is developed as a tool to analyse the performance of spectrum sensing detectors when detecting non-stationary PU signals. New detectors are also proposed to optimise detection with respect to duty cycle ex- hibited by the PU. This research consists of two major investigations. The first stage investigates the impact of duty cycle on the performance of existing detec- tors and the extent of the problem in existing studies. The second stage develops new detection models and frameworks to ensure the integrity of spectrum sensing when detecting non-stationary PU signals. The first investigation demonstrates that conventional signal model formulated for stationary PU does not accurately reflect the behaviour of a non-stationary PU. Therefore the performance calculated and assumed to be achievable by the conventional detector does not reflect actual performance achieved. Through analysing the statistical properties of duty cycle, performance degradation is proved to be a problem that cannot be easily neglected in existing sensing studies when PU is modelled as non-stationary. The second investigation presents detectors that are aware of the duty cycle ex- hibited by a non-stationary PU. A two stage detection model is proposed to improve the detection performance and robustness to changes in duty cycle. This detector is most suitable for applications that require long sensing periods. A second detector, the duty cycle based energy detector is formulated by integrat- ing the distribution of duty cycle into the test statistic of the energy detector and suitable for short sensing periods. The decision threshold is optimised with respect to the traffic model of the PU, hence the proposed detector can calculate average detection performance that reflect realistic results. A detection framework for the application of spectrum sensing optimisation is proposed to provide clear guidance on the constraints on sensing and detection model. Following this framework will ensure the signal model accurately reflects practical behaviour while the detection model implemented is also suitable for the desired detection assumption. Based on this framework, a spectrum sensing optimisation algorithm is further developed to maximise the sensing efficiency for non-stationary PU. New optimisation constraints are derived to account for any PU state changes within the sensing cycle while implementing the proposed duty cycle based detector.
Resumo:
Traditional area-based matching techniques make use of similarity metrics such as the Sum of Absolute Differences(SAD), Sum of Squared Differences (SSD) and Normalised Cross Correlation (NCC). Non-parametric matching algorithms such as the rank and census rely on the relative ordering of pixel values rather than the pixels themselves as a similarity measure. Both traditional area-based and non-parametric stereo matching techniques have an algorithmic structure which is amenable to fast hardware realisation. This investigation undertakes a performance assessment of these two families of algorithms for robustness to radiometric distortion and random noise. A generic implementation framework is presented for the stereo matching problem and the relative hardware requirements for the various metrics investigated.
Resumo:
There is a growing interest in the use of megavoltage cone-beam computed tomography (MV CBCT) data for radiotherapy treatment planning. To calculate accurate dose distributions, knowledge of the electron density (ED) of the tissues being irradiated is required. In the case of MV CBCT, it is necessary to determine a calibration-relating CT number to ED, utilizing the photon beam produced for MV CBCT. A number of different parameters can affect this calibration. This study was undertaken on the Siemens MV CBCT system, MVision, to evaluate the effect of the following parameters on the reconstructed CT pixel value to ED calibration: the number of monitor units (MUs) used (5, 8, 15 and 60 MUs), the image reconstruction filter (head and neck, and pelvis), reconstruction matrix size (256 by 256 and 512 by 512), and the addition of extra solid water surrounding the ED phantom. A Gammex electron density CT phantom containing EDs from 0.292 to 1.707 was imaged under each of these conditions. The linear relationship between MV CBCT pixel value and ED was demonstrated for all MU settings and over the range of EDs. Changes in MU number did not dramatically alter the MV CBCT ED calibration. The use of different reconstruction filters was found to affect the MV CBCT ED calibration, as was the addition of solid water surrounding the phantom. Dose distributions from treatment plans calculated with simulated image data from a 15 MU head and neck reconstruction filter MV CBCT image and a MV CBCT ED calibration curve from the image data parameters and a 15 MU pelvis reconstruction filter showed small and clinically insignificant differences. Thus, the use of a single MV CBCT ED calibration curve is unlikely to result in any clinical differences. However, to ensure minimal uncertainties in dose reporting, MV CBCT ED calibration measurements could be carried out using parameter-specific calibration measurements.
Resumo:
This paper presents an efficient face detection method suitable for real-time surveillance applications. Improved efficiency is achieved by constraining the search window of an AdaBoost face detector to pre-selected regions. Firstly, the proposed method takes a sparse grid of sample pixels from the image to reduce whole image scan time. A fusion of foreground segmentation and skin colour segmentation is then used to select candidate face regions. Finally, a classifier-based face detector is applied only to selected regions to verify the presence of a face (the Viola-Jones detector is used in this paper). The proposed system is evaluated using 640 x 480 pixels test images and compared with other relevant methods. Experimental results show that the proposed method reduces the detection time to 42 ms, where the Viola-Jones detector alone requires 565 ms (on a desktop processor). This improvement makes the face detector suitable for real-time applications. Furthermore, the proposed method requires 50% of the computation time of the best competing method, while reducing the false positive rate by 3.2% and maintaining the same hit rate.
Resumo:
Background subtraction is a fundamental low-level processing task in numerous computer vision applications. The vast majority of algorithms process images on a pixel-by-pixel basis, where an independent decision is made for each pixel. A general limitation of such processing is that rich contextual information is not taken into account. We propose a block-based method capable of dealing with noise, illumination variations, and dynamic backgrounds, while still obtaining smooth contours of foreground objects. Specifically, image sequences are analyzed on an overlapping block-by-block basis. A low-dimensional texture descriptor obtained from each block is passed through an adaptive classifier cascade, where each stage handles a distinct problem. A probabilistic foreground mask generation approach then exploits block overlaps to integrate interim block-level decisions into final pixel-level foreground segmentation. Unlike many pixel-based methods, ad-hoc postprocessing of foreground masks is not required. Experiments on the difficult Wallflower and I2R datasets show that the proposed approach obtains on average better results (both qualitatively and quantitatively) than several prominent methods. We furthermore propose the use of tracking performance as an unbiased approach for assessing the practical usefulness of foreground segmentation methods, and show that the proposed approach leads to considerable improvements in tracking accuracy on the CAVIAR dataset.
Resumo:
High magnification and large depth of field with a temporal resolution of less than 100 microseconds are possible using the present invention which combines a linear electron beam produced by a tungsten filament from an SX-40A Scanning Electron Microscope (SEM), a magnetic deflection coil with lower inductance resulting from reducing the number of turns of the saddle-coil wires, while increasing the diameter of the wires, a fast scintillator, photomultiplier tube, photomultiplier tube base, and signal amplifiers and a high speed data acquisition system which allows for a scan rate of 381 frames per second and 256.times.128 pixel density in the SEM image at a data acquisition rate of 25 MHz. The data acquisition and scan position are fully coordinated. A digitizer and a digital waveform generator which generates the sweep signals to the scan coils run off the same clock to acquire the signal in real-time.
Resumo:
The effects of small changes in flight-path parameters (primary and secondary flight paths, detector angles), and of displacement of the sample along the beam axis away from its ideal position, are examined for an inelastic time-of-flight (TOF) neutron spectrometer, emphasising the deep-inelastic regime. The aim was to develop a rational basis for deciding what measured shifts in the positions of spectral peaks could be regarded as reliable in the light of the uncertainties in the calibrated flight-path parameters. Uncertainty in the length of the primary or secondary flight path has the least effect on the positions of the peaks of H, D and He, which are dominated by the accuracy of the calibration of the detector angles. This aspect of the calibration of a TOF spectrometer therefore demands close attention to achieve reliable outcomes where the position of the peaks is of significant scientific interest and is discussed in detail. The corresponding sensitivities of the position of peak of the Compton profile, J(y), to flight-path parameters and sample position are also examined, focusing on the comparability across experiments of results for H, D and He. We show that positioning the sample to within a few mm of the ideal position is required to ensure good comparability between experiments if data from detectors at high forward angles are to be reliably interpreted.
Resumo:
In general optical systems, the range of distances over which the detector cannot detect any change in focus is called the depth-of-field. This may be specified by movement of the object or image planes, with the former being referred to as depth-of-field and the latter as depth-of-focus (DOF). Either term can be used in vision science, where we refer to changes in vergence which have the same value in both object and image space.
Resumo:
This paper looks at the accuracy of using the built-in camera of smart phones and free software as an economical way to quantify and analyse light exposure by producing luminance maps from High Dynamic Range (HDR) images. HDR images were captured with an Apple iPhone 4S to capture a wide variation of luminance within an indoor and outdoor scene. The HDR images were then processed using Photosphere software (Ward, 2010.) to produce luminance maps, where individual pixel values were compared with calibrated luminance meter readings. This comparison has shown an average luminance error of ~8% between the HDR image pixel values and luminance meter readings, when the range of luminances in the image is limited to approximately 1,500cd/m2.
Resumo:
We propose a multi-layer spectrum sensing optimisation algorithm to maximise sensing efficiency by computing the optimal sensing and transmission durations for a fast changing, dynamic primary user. Dynamic primary user traffic is modelled as a random process, where the primary user changes states during both the sensing period and transmission period to reflect a more realistic scenario. Furthermore, we formulate joint constraints to correctly reflect interference to the primary user and lost opportunity of the secondary user during the transmission period. Finally, we implement a novel duty cycle based detector that is optimised with respect to PU traffic to accurately detect primary user activity during the sensing period. Simulation results show that unlike currently used detection models, the proposed algorithm can jointly optimise the sensing and transmission durations to simultaneously satisfy the optimisation constraints for the considered primary user traffic.
Resumo:
The aim of this work is to develop software that is capable of back projecting primary fluence images obtained from EPID measurements through phantom and patient geometries in order to calculate 3D dose distributions. In the first instance, we aim to develop a tool for pretreatment verification in IMRT. In our approach, a Geant4 application is used to back project primary fluence values from each EPID pixel towards the source. Each beam is considered to be polyenergetic, with a spectrum obtained from Monte Carlo calculations for the LINAC in question. At each step of the ray tracing process, the energy differential fluence is corrected for attenuation and beam divergence. Subsequently, the TERMA is calculated and accumulated to an energy differential 3D TERMA distribution. This distribution is then convolved with monoenergetic point spread kernels, thus generating energy differential 3D dose distributions. The resulting dose distributions are accumulated to yield the total dose distribution, which can then be used for pre-treatment verification of IMRT plans. Preliminary results were obtained for a test EPID image comprised of 100 9 100 pixels of unity fluence. Back projection of this field into a 30 cm9 30 cm 9 30 cm water phantom was performed, with TERMA distributions obtained in approximately 10 min (running on a single core of a 3 GHz processor). Point spread kernels for monoenergetic photons in water were calculated using a separate Geant4 application. Following convolution and summation, the resulting 3D dose distribution produced familiar build-up and penumbral features. In order to validate the dose model we will use EPID images recorded without any attenuating material in the beam for a number of MLC defined square fields. The dose distributions in water will be calculated and compared to TPS predictions.