1000 resultados para peritumoral brain zone
Resumo:
The use of visual cues during the processing of audiovisual (AV) speech is known to be less efficient in children and adults with language difficulties and difficulties are known to be more prevalent in children from low-income populations. In the present study, we followed an economically diverse group of thirty-seven infants longitudinally from 6–9 months to 14–16 months of age. We used eye-tracking to examine whether individual differences in visual attention during AV processing of speech in 6–9 month old infants, particularly when processing congruent and incongruent auditory and visual speech cues, might be indicative of their later language development. Twenty-two of these 6–9 month old infants also participated in an event-related potential (ERP) AV task within the same experimental session. Language development was then followed-up at the age of 14–16 months, using two measures of language development, the Preschool Language Scale and the Oxford Communicative Development Inventory. The results show that those infants who were less efficient in auditory speech processing at the age of 6–9 months had lower receptive language scores at 14–16 months. A correlational analysis revealed that the pattern of face scanning and ERP responses to audiovisually incongruent stimuli at 6–9 months were both significantly associated with language development at 14–16 months. These findings add to the understanding of individual differences in neural signatures of AV processing and associated looking behavior in infants.
Resumo:
Research on audiovisual speech integration has reported high levels of individual variability, especially among young infants. In the present study we tested the hypothesis that this variability results from individual differences in the maturation of audiovisual speech processing during infancy. A developmental shift in selective attention to audiovisual speech has been demonstrated between 6 and 9 months with an increase in the time spent looking to articulating mouths as compared to eyes (Lewkowicz & Hansen-Tift. (2012) Proc. Natl Acad. Sci. USA, 109, 1431–1436; Tomalski et al. (2012) Eur. J. Dev. Psychol., 1–14). In the present study we tested whether these changes in behavioural maturational level are associated with differences in brain responses to audiovisual speech across this age range. We measured high-density event-related potentials (ERPs) in response to videos of audiovisually matching and mismatched syllables /ba/ and /ga/, and subsequently examined visual scanning of the same stimuli with eye-tracking. There were no clear age-specific changes in ERPs, but the amplitude of audiovisual mismatch response (AVMMR) to the combination of visual /ba/ and auditory /ga/ was strongly negatively associated with looking time to the mouth in the same condition. These results have significant implications for our understanding of individual differences in neural signatures of audiovisual speech processing in infants, suggesting that they are not strictly related to chronological age but instead associated with the maturation of looking behaviour, and develop at individual rates in the second half of the first year of life.
Resumo:
Dissertação de Mestrado, Gestão da Água e da Costa, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2009
Resumo:
Dissertação de Mestrado, Gestão da Água e da Costa, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2010
Resumo:
This special issue of Estuarine, Coastal and Shelf Science synthesizes and updates the developments in science related to Land Ocean Interactions in the Coastal Zone (LOICZ). Frequent updates about the dynamic coastal zone are useful and necessary as global change accelerates. There is an urgent need to improve the knowledge and understanding of the vulnerability of society and ecosystems to global change hazards in the coastal zone (Vermaat et al., 2005). The collection of papers in this special issue places new developments, findings, techniques and insights within the context of LOICZ science. For the convenience of the reader, the references to papers included in this special issue are printed in italic, whereas other references to LOICZ science are in normal print.
In vitro blood-brain barrier models to predict the permeation of gene therapy vectors into the brain
Resumo:
A terapia génica tem-se revelado uma alternativa relevante no tratamento de doenças neurodegenerativas (DN). Contudo, a entrega de vetores para transferência génica no cérebro representa ainda um enorme desafio devido à presença da barreira hemato-encefálica (BHE). A BHE é uma interface dinâmica e seletiva entre o sangue e o cérebro, constituída pelas células endoteliais cerebrais, astrócitos e pericitos, desempenhando um importante papel na regulação da homeostasia cerebral. A BHE representa um dos maiores obstáculos no tratamento de DN, uma vez que esta barreira impede o transporte para o cérebro da maioria das moléculas terapêuticas, incluindo os vetores para terapia génica. Embora tenham sido desenvolvidos diferentes modelos in vitro da BHE de forma a avaliar o transporte de fármacos através da BHE, muito poucos foram criados com o intuito de testar a permeabilidade desta barreira a vetores de terapia génica. O presente trabalho teve como objetivo principal o desenvolvimento e a avaliação de modelos in vitro de BHE que permitam a investigação da capacidade dos vetores de terapia génica de penetrarem no cérebro. No nosso estudo, foram testados diferentes modelos in vitro de BHE em monocultura, constituídos por células endoteliais de rato ou murganho (RBE4 e bEnd3, respetivamente), e modelos de co-cultura, que combinam células endoteliais com células neuronais (Neuro2a) ou astrócitos primários, cultivados num sistema transwell. Para caraterizar estes modelos foram realizados testes de permeabilidade e de resistência elétrica transendotelial, bem como estudos baseados na técnica de PCR quantitativo e na imunocitoquímica das proteínas das junções intercelulares. Verificámos que os modelos baseados na cultura de células bEnd3 e células neuronais ou astrócitos apresentavam as melhores propriedades de barreira. Posteriormente foi avaliada nos modelos selecionados a penetração de um vetor não-viral que reconhecidamente tem a capacidade de atravessar in vivo a BHE: o peptídeo da glicoproteína do vírus da raiva (RGV-9r). Os siRNAs marcados com um fluoróforo e acoplados ao peptídeo RVG-9r foram capazes de penetrar eficientemente as células bEnd3, localizadas no lado luminal do insert, via endocitose mediada por recetores, e ainda de penetrar os astrócitos ou células neuronais, previamente cultivadas no lado abluminal. Estes resultados correlacionam-se, de forma clara, com os resultados previamente descritos em estudos in vivo. Em conclusão, os modelos in vitro de BHE baseados na co-cultura de células bEnd3 com células Neuro2a ou astrócitos, têm grande potencial na seleção de candidatos a vetores de terapia génica para o cérebro, uma vez que apresentam importantes características da BHE e se baseiam num método fácil e reprodutível. Tal facto representa uma promessa significativa para a identificação de novas estratégias de terapia génica não invasiva para o tratamento de doenças neurológicas.
Resumo:
The fact that the adult brain is able to produce new neurons or glial cells from neural stem cells (NSC) became one of the most interesting and challenging fields of research in neuroscience. Endogenous adult neurogenesis occurs in two main regions of the brain: the subventricular zone (SVZ) of the lateral ventricles and the subgranular zone (SGZ) in the dentate gyrus. Brain injury may be accompanied by increased neurogenesis, although neuroinflammation promotes the activation of microglial cells that can be detrimental to the neurogenic process. Nitric oxide (NO) is one of the factors released by microglia that can be proneurogenic. The mechanism by which NO promotes the proliferation of NSCs has been intensively studied. However, little is known about the role of NO in migration, survival and differentiation of the newborn cells. The aim of this work was to investigate the role of NO from inflammatory origin in proliferation, migration, differentiation and survival of NSCs from the dentate gyrus in a mouse model of status epilepticus. We also assessed neuroinflammation in the same injury model. Our work showed that NO increased proliferation of the early-born cells after seizures, but is detrimental for their survival. NO also increased migration of neuroblasts. Moreover, NO was important to maintain long-term neuroinflammation. Taken together, these results show that NO may be a good target to promote proliferation and migration of NSCs following seizures, but compromises survival of early-born cells.
Resumo:
Dissertação de Mestrado, Biologia Molecular e Microbiana, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015
Resumo:
Tese de doutoramento, Biologia (Ecofisiologia), Universidade de Lisboa, Faculdade de Ciências, 2014
Resumo:
Tese de doutoramento, Ciências Biomédicas (Neurociências), Universidade de Lisboa, Faculdade de Medicina, 2014
Resumo:
Tese de doutoramento, Ciências Biomédicas (Neurociências), Universidade de Lisboa, Faculdade de Medicina, 2015
Resumo:
Tese de mestrado. Oncobiologia, Faculdade de Medicina, Universidade de Lisboa, 2015
Resumo:
The brain-sex theory of occupational choice suggests that males and females in male-typical careers show a male pattern of cognitive ability in terms of better spatial than verbal performance on cognitive tests with the reverse pattern for females and males in female-typical careers, These differences are thought to result from patterns of cerebral functional lateralisation. This study Sought Such occupationally related effects using synonym generation (verbal ability) and mental rotation (spatial ability) tasks used previously. It also used entrants to these careers as participants to examine whether patterns of cognitive abilities might predate explicit training and practice. Using a population of entrants to sex-differentiated University Courses, a moderate occupational effect on the synonym generation task was found, along with a weak (p<.10) sex effect on the mental rotation task. Highest performance on the mental rotation task was by female Students in fashion design, a female-dominated occupation which makes substantial visuospatial demands and attracts many students with literacy problems such as dyslexia. This group then appears to be a counterexample to the brain-sex theory. However, methodological issues Surrounding previous Studies are highlighted: the simple synonym task appears to show limited discrimination of the sexes, leading to questions concerning the legitimacy of inferences about lateralisation based on scores from that test. Moreover, the human figure-based mental rotation task appears to tap the wrong aspect of visuospatial skill, likely to be needed for male-typical courses such as engineering, Since the fashion-clesign career is also one that attracts disproportionately many male students whose sexual orientation is homosexual, data were examined for evidence of female-typical patterns of cognitive performance among that subgroup. This was not found. This study therefore provides Do evidence for the claim that female-pattern cerebral functional lateralisation is likely in gay males.