912 resultados para ovarian follicle
Resumo:
BACKGROUND: Genetic association studies are conducted to discover genetic loci that contribute to an inherited trait, identify the variants behind these associations and ascertain their functional role in determining the phenotype. To date, functional annotations of the genetic variants have rarely played more than an indirect role in assessing evidence for association. Here, we demonstrate how these data can be systematically integrated into an association study's analysis plan. RESULTS: We developed a Bayesian statistical model for the prior probability of phenotype-genotype association that incorporates data from past association studies and publicly available functional annotation data regarding the susceptibility variants under study. The model takes the form of a binary regression of association status on a set of annotation variables whose coefficients were estimated through an analysis of associated SNPs in the GWAS Catalog (GC). The functional predictors examined included measures that have been demonstrated to correlate with the association status of SNPs in the GC and some whose utility in this regard is speculative: summaries of the UCSC Human Genome Browser ENCODE super-track data, dbSNP function class, sequence conservation summaries, proximity to genomic variants in the Database of Genomic Variants and known regulatory elements in the Open Regulatory Annotation database, PolyPhen-2 probabilities and RegulomeDB categories. Because we expected that only a fraction of the annotations would contribute to predicting association, we employed a penalized likelihood method to reduce the impact of non-informative predictors and evaluated the model's ability to predict GC SNPs not used to construct the model. We show that the functional data alone are predictive of a SNP's presence in the GC. Further, using data from a genome-wide study of ovarian cancer, we demonstrate that their use as prior data when testing for association is practical at the genome-wide scale and improves power to detect associations. CONCLUSIONS: We show how diverse functional annotations can be efficiently combined to create 'functional signatures' that predict the a priori odds of a variant's association to a trait and how these signatures can be integrated into a standard genome-wide-scale association analysis, resulting in improved power to detect truly associated variants.
Resumo:
In sexually reproducing animals, male and female reproductive strategies often conflict. In some species, males use aggression to overcome female choice, but debate persists over the extent to which this strategy is successful. Previous studies of male aggression toward females among wild chimpanzees have yielded contradictory results about the relationship between aggression and mating behavior. Critically, however, copulation frequency in primates is not always predictive of reproductive success. We analyzed a 17-year sample of behavioral and genetic data from the Kasekela chimpanzee (Pan troglodytes schweinfurthii) community in Gombe National Park, Tanzania, to test the hypothesis that male aggression toward females increases male reproductive success. We examined the effect of male aggression toward females during ovarian cycling, including periods when the females were sexually receptive (swollen) and periods when they were not. We found that, after controlling for confounding factors, male aggression during a female's swollen periods was positively correlated with copulation frequency. However, aggression toward swollen females was not predictive of paternity. Instead, aggression by high-ranking males toward females during their nonswollen periods was positively associated with likelihood of paternity. This indicates that long-term patterns of intimidation allow high-ranking males to increase their reproductive success, supporting the sexual coercion hypothesis. To our knowledge, this is the first study to present genetic evidence of sexual coercion as an adaptive strategy in a social mammal.
Resumo:
PURPOSE: Risk-stratified guidelines can improve quality of care and cost-effectiveness, but their uptake in primary care has been limited. MeTree, a Web-based, patient-facing risk-assessment and clinical decision support tool, is designed to facilitate uptake of risk-stratified guidelines. METHODS: A hybrid implementation-effectiveness trial of three clinics (two intervention, one control). PARTICIPANTS: consentable nonadopted adults with upcoming appointments. PRIMARY OUTCOME: agreement between patient risk level and risk management for those meeting evidence-based criteria for increased-risk risk-management strategies (increased risk) and those who do not (average risk) before MeTree and after. MEASURES: chart abstraction was used to identify risk management related to colon, breast, and ovarian cancer, hereditary cancer, and thrombosis. RESULTS: Participants = 488, female = 284 (58.2%), white = 411 (85.7%), mean age = 58.7 (SD = 12.3). Agreement between risk management and risk level for all conditions for each participant, except for colon cancer, which was limited to those <50 years of age, was (i) 1.1% (N = 2/174) for the increased-risk group before MeTree and 16.1% (N = 28/174) after and (ii) 99.2% (N = 2,125/2,142) for the average-risk group before MeTree and 99.5% (N = 2,131/2,142) after. Of those receiving increased-risk risk-management strategies at baseline, 10.5% (N = 2/19) met criteria for increased risk. After MeTree, 80.7% (N = 46/57) met criteria. CONCLUSION: MeTree integration into primary care can improve uptake of risk-stratified guidelines and potentially reduce "overuse" and "underuse" of increased-risk services.Genet Med 18 10, 1020-1028.
Resumo:
Lasioglossum malachurum, a bee species common across much of Europe, is obligately eusocial across its range but exhibits clear geographic variation in demography and social behaviour. This variation suggests that social interactions between queens and workers, opportunities for worker oviposition, and patterns of relatedness among nest mates may vary considerably, both within and among regions. In this study, we used three microsatellite loci with 12–18 alleles each to examine the sociogenetic structure of colonies from a population at Agios Nikolaos Monemvasias in southern Greece. These analyses reveal that the majority of colonies exhibit classical eusocial colony structure in which a single queen mated to a single male monopolizes oviposition. Nevertheless, we also detect low rates of multiqueen nest founding, occasional caste switching by worker-destined females, and worker oviposition of both gyne and male-producing eggs in the final brood. Previous evidence that the majority of workers show some ovarian development and a minority (17%) have at least one large oocyte contrasts with the observation that only 2–3% of gynes and males (the so-called reproductive brood) are produced by workers. An evaluation of the parameters of Hamilton's Rule suggests that queens benefit greatly from the help provided by workers but that workers achieve greater fitness by provisioning and laying their own eggs rather than by tending to the queen's eggs. This conflict of interest between the queen and her workers suggests that the discrepancy between potential and achieved worker oviposition is due to queen interference. Comparison of relatedness and maternity patterns in the Agios Nikolaos Monemvasias population with those from a northern population near Tübingen, Germany, points to a north–south cline of increasingly effective queen control of worker behaviour.
Resumo:
BRCA1 is a tumour suppressor gene implicated in the predisposition to early onset breast and ovarian cancer. We have generated cell lines with inducible expression of BRCA1 to evaluate its role in mediating the cellular response to various chemotherapeutic drugs commonly used in the treatment of breast and ovarian cancer. Induction of BRCA1 in the presence of Taxol and Vincristine resulted in a dramatic increase in cell death; an effect that was preceded by an acute arrest at the G2/M phase of the cell cycle and which correlated with BRCA1 mediated induction of GADD45. A proportion of the arrested cells were blocked in mitosis suggesting activation of both a G2 and a mitotic spindle checkpoint. In contrast, no specific interaction was observed between BRCA1 induction and treatment of cells with a range of DNA damaging agents including Cisplatin and Adriamycin. Inducible expression of GADD45 in the presence of Taxol induced both G2 and mitotic arrest in these cells consistent with a role for GADD45 in contributing to these effects. Our results support a role for both BRCA1 and GADD45 in selectively regulating a G2/M checkpoint in response to antimicrotubule agents and raise the possibility that their expression levels in cells may contribute to the toxicity observed with these compounds.
Resumo:
BRCA1 encodes a tumor suppressor gene that is mutated in the germ line of women with a genetic predisposition to breast and ovarian cancer. BRCA1 has been implicated in a number of important cellular functions including DNA damage repair, transcriptional regulation, cell cycle control, and ubiquitination. Using an Affymetrix U95A microarray, IRF-7 was identified as a BRCA1 transcriptional target and was also shown to be synergistically up-regulated by BRCA1 specifically in the presence of IFN-gamma, coincident with the synergistic induction of apoptosis. We show that BRCA1, signal transducer and activator of transcription (STAT)-1, and STAT2 are all required for the induction of IRF-7 following stimulation with IFN-gamma. We also show that the induction of IRF-7 by BRCA1 and IFN-gamma is dependent on the type I IFNs, IFN-alpha and IFN-beta. We show that BRCA1 is required for the up-regulation of STAT1, STAT2, and the type I IFNs in response to IFN-gamma. We show that BRCA1 is localized at the promoters of the molecules involved in type I IFN signaling leading to their up-regulation. Blocking this intermediary type I IFN step using specific antisera shows the requirement for IFN-alpha and IFN-beta in the induction of IRF-7 and apoptosis. Finally, we outline a mechanism for the BRCA1/IFN-gamma regulation of target genes involved in the innate immune response, which is dependent on type I IFN signaling.
Resumo:
Anillin is an actin-binding protein that can bind septins and is a component of the cytokinetic ring. We assessed the anillin expression in 7,579 human tissue samples and cell lines by DNA micro-array analysis. Anillin is expressed ubiquitously but with variable levels of expression, being highest in the central nervous system. The median level of anillin mRNA expression was higher in tumors than normal tissues (median fold increase 2.58; 95% confidence intervals, 2.19-5.68, P < 0.0001) except in the central nervous system where anillin in RNA levels were lower in tumors. We developed a sensitive reverse transcription-PCR strategy to show that anillin mRNA is expressed in cell lines and in cDNA panels derived from fetal and adult tissues, thus validating the microarray data. We compared anillin with Ki67 in RNA expression and found a significant linear relationship between anillin and Ki67 mRNA expression (Spearmann r similar to 0.6, P < 0.0001). Anillin mRNA expression was analyzed during tumor progression in breast, ovarian, kidney, colorectal, hepatic, lung, endometrial, and pancreatic tumors and in all tissues there was progressive, increase in anillin mRNA expression from normal to benign to malignant to metastatic disease. Finally, we used anti-anillin sera and found nuclear anillin immuncireactivity to be widespread in normal tissues, often not correlating with proliferative compartments. These data provide insight into the existence of non proliferation-associated activities of anillin and roles in interphase nuclei. Thus, anillin is overexpressed in diverse common human tumors, but not simply as a consequence of being a proliferation marker. Anillin may have potential as a novel biomarker.
Resumo:
BRCA1 (breast-cancer susceptibility gene 1) is a tumour suppressor gene that is mutated in the germline of women with a genetic predisposition to breast and ovarian cancer. In this review, we examine the role played by BRCA1 in mediating the cellular response to stress. We review the role played by BRCA1 in detecting and signalling the presence of DNA damage, particularly double-strand DNA breaks, and look at the evidence to support a role for BRCA1 in regulating stress response pathways such as the c-Jun N-terminal kinase/stress-activated protein kinase pathway. in addition, we examine the role played by BRCA1 in mediating both cell-cycle arrest and apoptosis following different types of cellular insult, and how this may be modulated by the presence or absence of associated proteins such as p53. Finally, we explore the possibility that many of the functions associated with BRCA1 may be based on transcriptional regulation of key downstream genes that have been implicated in the regulation of these specific cellular pathways.
Resumo:
The BRCA1 gene was cloned in 1994 as one of the genes that conferred genetic predisposition to early-onset breast and ovarian cancer. Since then, a genetic test for identification of high-risk individuals has been developed. Despite being implicated in many important cellular pathways, including DNA repair and regulation of transcription, the exact mechanism by which inactivation of BRCA1 might lead to malignant transformation of cells remains unknown. We examine the mechanisms that underlie inactivation of BRCA1 and assess how they affect management of patients, in terms of both primary and secondary cancer prevention strategies. Furthermore, we look at the potential usefulness of BRCA1 as a prognostic tool and as a predictive marker of response to different classes of drugs. Finally, throughout this review, we draw links between the functional consequences of BRCA1 inactivation, in terms of key cellular signalling pathways, and how they might explain specific clinical observations in individuals who carry mutations in the gene.
Resumo:
The aims of this study were to investigate mechanisms of action involved in H2AX phosphorylation by DNA interstrand crosslinking (ICL) agents and determine whether gamma H2AX could be a suitable pharmacological marker for identifying potential ICL cellular chemosensitivity. In normal human fibroblasts, after treatment with nitrogen mustard (HN2) or cisplatin, the peak gamma H2AX response was detected 2-3 h after the peak of DNA ICLs measured using the comet assay, a validated method for detecting ICLs in vitro or in clinical samples. Detection of gamma H2AX foci by immunofluorescence microscopy could be routinely detected with 6-10 times lower concentrations of both drugs compared to detection of ICLs using the comet assay. A major pathway for repairing DNA ICLs is the initial unhooking of the ICL by the ERCC1-XPF endonuclease followed by homologous recombination. HN2 or cisplatin-induced gamma H2AX foci persisted significantly longer in both, ERCC1 or XRCC3 (homologous recombination) defective Chinese hamster cells that are highly sensitive to cell killing by ICL agents compared to wild type or ionising radiation sensitive XRCC5 cells. An advantage of using gamma H2AX immunofluorescence over the comet assay is that it appears to detect ICL chemosensitivity in both ERCC1 and HR defective cells. With HN2 and cisplatin, gamma H2AX foci also persisted in chemosensitive human ovarian cancer cells (A2780) compared to chemoresistant (A2780cisR) cells. These results show that gamma H2AX can act as a highly sensitive and general marker of DNA damage induced by HN2 or cisplatin and shows promise for predicting potential cellular chemosensitivity to ICL agents. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
The role of the serine/threonine protein kinase B (PKB, also known as Akt) is becoming increasingly more evident to researchers investigating diverse cellular processes such as glucose uptake, cell-cycle progression, apoptosis and transcriptional regulation. New roles for PKB/Akt have been described in various organisms and biological processes. From the regulation of ovarian ecdysteroid production in the humble mosquito (Aedes aegypti), through the seasonal, tissue-specific regulation of PKB/Akt during the hibernation of yellow-bellied marmots (Marmota flaviventris), to the control of glucose metabolism and insulin signalling in the mouse (Mus musculus), our knowledge of the function of this protein kinase has expanded greatly in recent years. Significant advances in all aspects of PKB/Akt signalling have occurred in the past 2 years, including biological insights, novel substrates and newly discovered regulatory mechanisms of PKB/Akt. Collectively, these data expand the current models of PKB/Akt signalling and highlight potential directions for PKB/Akt research in the future.
Resumo:
The use of screening methods based on the detection of biological effects of growth promoters is a promising approach to assist residue monitoring. To reveal useful effects on protein metabolism, male and female veal calves at 10 weeks of age were treated thrice with a combination of 25 mg 17ß-estradiol 3-benzoate and 150 mg 19-nortestosterone decanoate with 2 weeks intervals and finally once with 4 mg dexamethasone. Hormone-treated calves showed a significant accelerated growth rate over 6 weeks. Plasma samples of treated and control calves were analysed for immunoreactive inhibin (ir-inhibin), osteocalcin, insulin-like growth factor 1 (IGF-1), insulin-like growth factor-binding protein 2 (IGFBP-2), IGFBP-3, luteinzing hormone (LH), follicle-stimulating hormone (FSH) and prolactin using immunoaffinity assays. Hormone treatment did not affect levels of IGF-1, IGFBP-2, IGFBP-3, LH, FSH and prolactin. The concentration of circulating ir-inhibin decreased, however, significantly (P < 0.05) in bull calves upon administration of the sex steroids, whereas it remained unchanged in the female animals. Dexamethasone treatment decreased significantly (P < 0.05) circulating levels of osteocalcin in both female and male animals. Ir-inhibin and osteocalcin were, therefore, considered as candidates for a protein biomarker-based screening assay for detection of abuse of estrogens, androgens and/or glucocorticoids in cattle fattening, which is being developed in the framework of EU research project BioCop