996 resultados para organic pesticide


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate an approach for realizing colour-controllable light emission from top-emitting organic light-emitting diodes (TEOLEDs) by utilizing exterior multilayer films overlaid on them. The emissive colour varies from blue to red for the TEOLED with green tris(8-quinolinolato) aluminium as the emissive layer by tuning the exterior multilayer films. The theoretical simulation of the electroluminescence for the colour tunable TEOLEDs is demonstrated and accords well with experimental results. The advantage of this approach is that the optical and electrical characteristics of the TEOLED can be controlled individually and hence provides the feasibility to realize a full-colour display by using white TEOLEDs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Efficient inverted top-emitting organic light-emitting diodes with aluminum (Al) as both the cathode and semitransparent anode are investigated. It is found that introduction of the ultrathin molybdenum trioxide (MoO3)/fullerene (C-60) bilayer structure between the low work function Al top anode and the hole-transporting layer dramatically enhances the device performance as compared to the devices with sole MoO3 or C-60 buffer layer. The ultraviolet photoemission spectroscopy and x-ray photoelectron spectroscopy indicate that the hole injection barrier between Al anode and hole-transporting layer is effectively reduced via strong dipole effect at Al/MoO3/C-60 interfaces with its direction pointing from Al to C-60.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By incorporating two phosphorescent dyes, namely, iridium(III)[bis(4,6-difluorophenyl)-pyridinato-N,C-2']picolinate (Flrpic) for blue emission and bis(2-(9,9-diethyl-9H-fluoren-2-yl)-1-phenyl-1 H-benzoimidazol-N,C-3) iridium(acetylacetonate) ((fbi)(2)Ir(acac)) for orange emission, into a single-energy well-like emissive layer, an extremely high-efficiency white organic light-emitting diode (WOLED) with excellent color stability is demonstrated. This device can achieve a peak forward-viewing power efficiency of 42.5 lm W-1, corresponding to an external quantum efficiency (EQE) of 19.3% and a current efficiency of 52.8 cd A(-1). Systematic studies of the dopants, host and dopant-doped host films in terms of photophysical properties (including absorption, photoluminescence, and excitation spectra), transient photoluminescence, current density-voltage characteristics, and temperature-dependent electroluminescence spectra are subsequently performed, from which it is concluded that the emission natures of Flrpic and (fbi)(2)Ir(acac) are, respectively, host-guest energy transfer and a direct exciton formation process. These two parallel pathways serve to channel the overall excitons to both dopants, greatly reducing unfavorable energy losses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By codoping blue and orange phosphorescent dyes into a single host material, a highly efficient white organic light-emitting diode (WOLED) with Commission Internationale de L'Eclairage coordinates of (0.38, 0.43) at 12 V is demonstrated. Remarkably, this WOLED achieves reduced current efficiency roll-off, which slightly decreases from its maximum value of 37.3-31.0 cd/A at 1000 cd/m(2). The device operational mechanism is subsequently investigated in order to unveil the origin of the high performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An alternative way to optimize the emission characteristics of a microcavity top-emitting organic light-emitting diode (TOLED) based on a simple device structure is demonstrated via combining a comprehensive theoretical analysis in the microcavity effects with the experimental modification in the carrier injection of both electrodes. It can be seen that the resulting TOLED exhibits much higher efficiencies and a more saturated color than those of the corresponding conventional bottom-emitting device, as well as hardly detectable color shift with viewing angles. Such a strategy may be more feasible in practical application for active-matrix organic light-emitting diode displays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Highly efficient fluorescent white organic light-emitting diodes (WOLEDs) have been fabricated by using three red, green and blue, separately monochromatic emission layers. The red and blue emissive layers are based on 4-(dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetramethyljulolidin-4-yl-vinyl)-4H-pyran (DCJTB) doped N,N'-di(naphthalene-1-yl)-N,N'-diphenyl-benzidine (NPB) and p-bis(p-N,N-diphenyl-amino-styryl) benzene (DSA-ph) doped 2-methyl-9,10-di(2-naphthyl) anthracene (MADN), respectively; and the green emissive layer is based on tris(8-hydroxyquionline)aluminum(Alq(3)) doped with 10-(2-benzothiazolyl)-2,3,6,7-tetrahydro-1,1,7,7-tetramethyl- 1H,5H,1[H-(1)-benzopyropyrano(6,7-8-i,j)quinolizin-1]-one (C545T), which is sandwiched between the red and the blue emissive layers. It can be seen that the devices show stable white emission with Commission International de L'Eclairage coordinates of (0.41, 0.41) and color rendering index (CRI) of 84 in a wide range of bias voltages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been found that cesium hydroxide (CsOH) doped tris(8-hydroxyquinoline) aluminum (Alq(3)) as an interfacial modification layer on indium-tin-oxide (ITO) is an effective cathode structure in inverted bottom-emission organic light-emitting diodes (IBOLEDs). The efficiency and high temperature stability of IBOLEDs with CsOH:Alq(3) interfacial layer are greatly improved with respect to the IBOLEDs with the case of Cs2CO3:Alq(3). Herein, we have studied the origin of the improvement in efficiency and high temperature stability via the modification role of CsOH:Alq(3) interfacial layer on ITO cathode in IBOLEDs by various characterization methods, including atomic force microscopy (AFM), ultraviolet photoemission spectroscopy (UPS), X-ray photoemission spectroscopy (XPS) and capacitance versus voltage (C-V). The results clearly demonstrate that the CsOH:Alq(3) interfacial modification layer on ITO cathode not only enhances the stability of the cathode interface and electron-transporting layer above it. which are in favor of the improvement in device stability, but also reduces the electron injection barrier and increases the carrier density for current conduction, leading to higher efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By introducing an effective electron injection layer (EIL) material, i.e., lead monoxide (PbO), combined with the optical design in device structure, a high efficiency inverted top-emitting organic light-emitting diode (ITOLED) with saturated and quite stable colors for different viewing angles is demonstrated. The green ITOLED based on 10-(2-benzothiazolyl)-1, 1, 7, 7-tetramethyl-2, 3, 6, 7-tetrahydro-1H, 5H, 11H-[1] benzopyrano [6, 7, 8-ij] quinolizin-11-one exhibits a maximum current efficiency of 33.8 cd/A and a maximum power efficiency of 16.6 lm/W, accompanied by a nearly Lambertian distribution as well as hardly detectable color variation in the 140 forward viewing cone. A detailed analysis on the role mechanism of PbO in electron injection demonstrates that the insertion of the PbO EIL significantly reduces operational voltage, thus greatly improving the device efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By introducing tungsten oxide (WO3) doped N,N-'-di(naphthalen-1-yl)-N,N-'-diphenyl-benzidine (NPB) hole injection layer, the great improvement in device efficiency and the organic film morphology stability at high temperature were realized for organic light-emitting diodes (OLEDs). The detailed investigations on the improvement mechanism by optical, electric, and film morphology properties were presented. The experimental results clearly demonstrated that using WO3 doped NPB as the hole injection layer in OLEDs not only reduced the hole injection barrier and enhanced the transport property, leading to low operational voltage and high efficiency, but also improved organic film morphology stability, which should be related to the device stability. It could be seen that due to the utilization of WO3 doped NPB hole injection layer in NPB/tris (8-quinolinolato) aluminum (Alq(3))-based device, the maximum efficiency reached 6.1 cd A(-1) and 4.8 lm W-1, which were much higher than 4.5 cd A(-1) and 1.1 lm W-1 of NPB/Alq(3) device without hole injection layer. The device with WO3 doped NPB hole injection layer yet gave high efficiency of 6.1 cd A(-1) (2.9 lm W-1) even though the device was fabricated at substrate temperature of 80 degrees C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By utilizing 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline:Li/MoO3 as an effective charge generation layer (CGL), we extend our recently demonstrated single-emitting-layer white organic light-emitting diode (WOLED) to realize an extremely high-efficiency tandem WOLED. This stacked device achieves maximum forward viewing current efficiency of 110.9 cd/A and external quantum efficiency of 43.3% at 1 mu A/cm(2) and emits stable white light with Commission Internationale de L'Eclairage coordinates of (0.34, 0.41) at 16 V. It is noted that the combination of effective single units and CGL is key prerequisite for realizing high-performance tandem WOLEDs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organic thin-film transistor memory devices were realized by inserting a layer of nanoparticles (such as Ag or CaF2) between two Nylon 6 gate dielectrics as the floating gate. The transistor memories were fabricated on glass substrates by full thermal deposition. The transistors exhibit significant hysteresis behavior in current-voltage characteristics, due to the separated Ag or CaF2 nanoparticle islands that act as charge trap centers. The mechanism of the transistor memory operation was discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A highly efficient and colour-stable three-wavelength white organic light-emitting diode with the structure of indium tin oxide (ITO)/MoO3/N,N'-diphenyl-N,N'-bis (1-naphthylphenyl)-1,1'-biphenyl-4,4'-diamine (NPB)/4,4'-N,N'-dicarbazole-biphenyl (CBP): bis(2,4-diphenylquinolyl-N,C-2') iridium( acetylacetonate) (PPQ)(2)Ir(acac)/NPB/p-bis(p-N,N-diphenyl-aminostyryl)benzene (DSA-Ph):2-methyl-9,10-di(2-naphthyl) anthracene (MADN)/tris (8-hydroxyquinoline) aluminum (AlQ): 10-(2-Benzothiazolyl)-2,3,6,7-tetrahydro-1,1,7,7-tetramethyl-1H,5H,11H-(1)-benzopyropyrano(6,7-8-i,j)quinolizin-11-one (C545T)/AlQ/LiF/Al is fabricated and characterized. A current efficiency of 12.3 cdA(-1) at an illumination-relevant brightness of 1000 cd m(-2) is obtained, which rolls off slightly to 10.3 cdA(-1) at a rather high brightness of 10 000 cd m(-2). We attribute this great reduction in the efficiency roll-off to the wise management of singlet and triplet excitons between emissive layers as well as the superior charge injection and diffusion balance in the device.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lead(IV) dioxide (PbO2) has been used as the electron injection layer (EIL) to realize high-efficiency inverted top-emitting organic light-emitting diodes (I-TOLEDs). It can be seen that the inserting of the PbO2 EIL significantly reduces operational voltage, thus greatly improving the current efficiency and power efficiency of fabricated I-TOLEDs. The 10-(2-benzothiazolyl)-1, 1, 7, 7-tetramethyl-2, 3, 6, 7-tetrahydro-1H, 5H, 11H-[1] benzopyrano [6, 7, 8-ij] quinolizin-11-one (C545T)-based I-TOLEDs with the PbO2 EIL exhibit a maximum current efficiency of 31.6 cd A(-1) and a maximum power efficiency of 14.3 lm W-1, which are both higher than 22.5 cd A(-1) and 5.4 lm W-1 of the I-TOLEDs with LiF as the EIL respectively. A detailed analysis with respect to the role mechanism of PbO2 in electron injection has been presented. The improvement in EL performance is attributed to the formation of the interfacial dipoles at the electrode interface due to charge transfer between PbO2 and Alq(3).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of NIR organic chromophores with donor-pi-acceptor-pi-donor structure are synthesized. Good thermal stability and strong photoluminescence in solid state render them suitable for application in light-emitting diodes. Exclusive near-infrared emission at 1080 nm with external quantum efficiency of 0.28% is obtained from the nondoped OLEDs. The longest electroluminescence wave-length is 1220 nm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

series of a donor-acceptor-donor type of near-infrared (NIR) fluorescent chromophores based on [1,2,5]thiadiazolo[3,4-g]quinoxaline (TQ) as an electron acceptor and triphenylamine as an electron donor are synthesized and characterized. By introducing pendent phenyl groups or changing the pi-conjugation length in the TQ core, we tuned tile energy levels of these chromophores, resulting in the NIR emission in a range from 784 to 868 nm. High thermal stability and glass transition temperatures allow these chromophores to be used as dopant emitters, which can be processed by vapor deposition for the fabrication of organic light-emitting diodes (OLEDs) having the multilayered structure of ITO/MoO3/NPB/Alq(3):dopant emitter/BCP/Alq(3)/LiF/Al. The electroluminescence spectra of the devices based on these new chromophores cover a range from 748 to 870 nm. With 2 wt % of dopant 1, the LED device shows an exclusive NIR emission at 752 nm with the external quantum efficiency (EQE) as high as 1.12% over a wide range of current density (e.g., around 200 mA cm(-2)).