985 resultados para organic fertilizer addition


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to select soil management practices that increase the nitrogen-use efficiency (NUE) in agro-ecosystems, the different indices of agronomic fertilizer efficiency must be evaluated under varied weather conditions. This study assessed the NUE indices in no-till corn in southern Paraguay. Nitrogen fertilizer rates from 0 to 180 kg ha-1 were applied in a single application at corn sowing and the crop response investigated in two growing seasons (2010 and 2011). The experimental design was a randomized block with three replications. Based on the data of grain yield, dry matter, and N uptake, the following fertilizer indices were assessed: agronomic N-use efficiency (ANE), apparent N recovery efficiency (NRE), N physiological efficiency (NPE), partial factor productivity (PFP), and partial nutrient balance (PNB). The weather conditions varied largely during the experimental period; the rainfall distribution was favorable for crop growth in the first season and unfavorable in the second. The PFP and ANE indices, as expected, decreased with increasing N fertilizer rates. A general analysis of the N fertilizer indices in the first season showed that the maximum rate (180 kg ha-1) obtained the highest corn yield and also optimized the efficiency of NPE, NRE and ANE. In the second season, under water stress, the most efficient N fertilizer rate (60 kg ha-1) was three times lower than in the first season, indicating a strong influence of weather conditions on NUE. Considering that weather instability is typical for southern Paraguay, anticipated full N fertilization at corn sowing is not recommended due the temporal variability of the optimum N fertilizer rate needed to achieve high ANE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are currently many devices and techniques to quantify trace elements (TEs) in various matrices, but their efficacy is dependent on the digestion methods (DMs) employed in the opening of such matrices which, although "organic", present inorganic components which are difficult to solubilize. This study was carried out to evaluate the recovery of Fe, Zn, Cr, Ni, Cd and Pb contents in samples of composts and cattle, horse, chicken, quail, and swine manures, as well as in sewage sludges and peat. The DMs employed were acid digestion in microwaves with HNO3 (EPA 3051A); nitric-perchloric digestion with HNO3 + HClO4 in a digestion block (NP); dry ashing in a muffle furnace and solubilization of residual ash in nitric acid (MDA); digestion by using aqua regia solution (HCl:HNO3) in the digestion block (AR); and acid digestion with HCl and HNO3 + H2O2 (EPA 3050). The dry ashing method led to the greatest recovery of Cd in organic residues, but the EPA 3050 protocol can be an alternative method for the same purpose. The dry ashing should not be employed to determine the concentration of Cr, Fe, Ni, Pb and Zn in the residues. Higher Cr and Fe contents are recovered when NP and EPA 3050 are employed in the opening of organic matrices. For most of the residues analyzed, AR is the most effective method for recovering Ni. Microwave-assisted digestion methods (EPA3051 and 3050) led to the highest recovery of Pb. The choice of the DM that provides maximum recovery of Zn depends on the organic residue and trace element analyzed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intensive land use can lead to a loss of soil physical quality with negative impacts on soil aggregates, resistance to root penetration, porosity, and bulk density. Organic and agroforestry management systems can represent sustainable, well-balanced alternatives in the agroecosystem for promoting a greater input of organic matter than the conventional system. Based on the hypothesis that an increased input of organic matter improves soil physical quality, this study aimed to evaluate the impact of coffee production systems on soil physical properties in two Red-Yellow Oxisols (Latossolos Vermelho-Amarelos) in the region of Caparaó, Espirito Santo, Brazil. On Farm 1, we evaluated the following systems: primary forest (Pf1), organic coffee (Org1) and conventional coffee (Con1). On Farm 2, we evaluated: secondary forest (Sf2), organic coffee intercropped with inga (Org/In2), organic coffee intercropped with leucaena and inga (Org/In/Le2), organic coffee intercropped with cedar (Org/Ced2) and unshaded conventional coffee (Con2). Soil samples were collected under the tree canopy from the 0-10, 10-20 and 20-40 cm soil layers. Under organic and agroforestry coffee management, soil aggregation was higher than under conventional coffee. In the agroforestry system, the degree of soil flocculation was 24 % higher, soil moisture was 80 % higher, and soil resistance to penetration was lower than in soil under conventional coffee management. The macroaggregates in the organic systems, Org/In2, Org/In/Le2, and Org/Ced2 contained, on average, 29.1, 40.1 and 34.7 g kg-1 organic carbon, respectively. These levels are higher than those found in the unshaded conventional system (Con2), with 20.2 g kg-1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selostus: Typen ja fosforin kulkeutuminen pinta- ja salaojavalunnassa lietelannalla ja NKP-lannoitteella lannoitetulta nurmelta

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Considering that information from soil reflectance spectra is underutilized in soil classification, this paper aimed to evaluate the relationship of soil physical, chemical properties and their spectra, to identify spectral patterns for soil classes, evaluate the use of numerical classification of profiles combined with spectral data for soil classification. We studied 20 soil profiles from the municipality of Piracicaba, State of São Paulo, Brazil, which were morphologically described and classified up to the 3rd category level of the Brazilian Soil Classification System (SiBCS). Subsequently, soil samples were collected from pedogenetic horizons and subjected to soil particle size and chemical analyses. Their Vis-NIR spectra were measured, followed by principal component analysis. Pearson's linear correlation coefficients were determined among the four principal components and the following soil properties: pH, organic matter, P, K, Ca, Mg, Al, CEC, base saturation, and Al saturation. We also carried out interpretation of the first three principal components and their relationships with soil classes defined by SiBCS. In addition, numerical classification of the profiles based on the OSACA algorithm was performed using spectral data as a basis. We determined the Normalized Mutual Information (NMI) and Uncertainty Coefficient (U). These coefficients represent the similarity between the numerical classification and the soil classes from SiBCS. Pearson's correlation coefficients were significant for the principal components when compared to sand, clay, Al content and soil color. Visual analysis of the principal component scores showed differences in the spectral behavior of the soil classes, mainly among Argissolos and the others soils. The NMI and U similarity coefficients showed values of 0.74 and 0.64, respectively, suggesting good similarity between the numerical and SiBCS classes. For example, numerical classification correctly distinguished Argissolos from Latossolos and Nitossolos. However, this mathematical technique was not able to distinguish Latossolos from Nitossolos Vermelho férricos, but the Cambissolos were well differentiated from other soil classes. The numerical technique proved to be effective and applicable to the soil classification process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Monte San Giorgio (Southern Alps, Ticino, Switzerland) is the most important locality in the world for vertebrates dating back to the Middle Triassic. For this reason it was registered in 2003 as a UNESCO World Heritage Site. One of the objectives of this doctoral thesis was to fill some of the cognitive gaps regarding the Ladinian succession, including in particular the San Giorgio Dolomite and the Meride Limestone. In order to achieve this, the entire succession, more than 600 metres thick, was measured and sampled. Biostratigraphic research based on new finds of fossil invertebrates and microfossils and on the palynological analysis of the entire section was integrated with single-zircon U-Pb dating of volcanic ash layers intercalated in the carbonate succession. This enabled a redefinition of the bio-chronostratigraphic and geochronologic framework of the succession, which encompasses a significantly shorter time interval than previously held. The Ladinian section extends from the E. curionii Ammonoid Zone (Early Fassanian) to the P. archelaus Ammonoid Zone (Early Longobardian). The age of the classic fossiliferous levels of the Meride Limestone, rich in organic matter and containing vertebrate fossils which are known all over the world, was defined in both biostratigraphic and geochronologic terms. The presumed stratigraphie significance of the pachypleurosaurid reptiles found in such levels is called into question by new finds. These fossiliferous horizons were found to correspond to the main volcanoclastic intervals of the Buchenstein Formation (Middle and Upper Pietra Verde). Thus, a correlation with the Bagolino Section (Italy) containing the GSSP for the base of the Ladinian was proposed. Bulk sedimentation rates in the studied succession average 200 m/Myr and therefore prove to be 20 times higher than those of the South-Alpine pelagic basins. These values express high carbonate productivity from the surrounding platforms on one hand, and on the other a marked subsidence of the basin. Only in the intervals consisting of laminated limestones did the sedimentation rates drop to average values of around 30 m/Myr. The distribution of organic and inorganic facies appears to be the consequence of relative variations in sea-level. The laminated and organic-matter- rich intervals of the Meride Limestone are linked to a relative sea-level drop which favoured dysoxic to anoxic bottom-water conditions, coupled with an increase in runoff, perhaps due to recurrent explosive volcanic activity. The transient development under dysoxic conditions of monospecific benthic meio-/macrofaunas was documented. Organic matter suggests a predominant origin due to benthic bacterial activity, as can be witnessed in alveolar structures typical of exopolymeric substances secreted by bacteria within microbial mats. A microbial contribution to the carbonate (peloidal) precipitation was documented. The protective effect exerted by these microbial mats is also indicated as the main taphonomic factor contributing to the excellent preservation of vertebrate fossils. A radiolarian assemblage discovered in the lower part of the section (earliest Ladinian, E. curionii Zone) suggests the transient existence of open-marine but not deep-water connections with the tethyan pelagic basins. It shows marked similarities to the faunas typical of the late Anisian, suggesting therefore a low resolution power provided by radiolarian biostratigraphy in recognizing the Anisian/Ladinian boundary. The present thesis describes a new species of conifer (Elatocladus cassinae), a new species of insect (Dasyleptus triassicus) and seven new species of radiolarians (Eptingium danieli, Eptingium neriae, Parentactinosphaera eoladinica, Sepsagon ticinensis, Sepsagon? valporinae, Novamuria wirzi and Pessagnollum? hexaspinosum). In addition, following revision of the type material of already existent taxa, four new genera of radiolarians are introduced: Bernoulliella, Eohexastylus, Ticinosphaera and Lahmosphaera.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The application of animal manure to soil can increase phosphorus availability to plants and enhance transfer of the nutrient solution drained from the soil surface or leached into the soil profile. The aim of this study was to evaluate the effect of successive applications of organic and mineral nutrient sources on the available content, surface runoff and leaching of P forms in a Typic Hapludalf in no-tillage systems. Experiment 1 was set up in 2004 in the experimental area of UFSM, in Santa Maria (RS, Brazil). The treatments consisted of: control (without nutrient application) and application of pig slurry (PS), pig deep-litter (PL), cattle slurry (CS), and mineral fertilizers (NPK). The rates were determined to meet the N crop requirements of no-tillage black oat and maize, grown in the 2010/2011 growing season. The soil solution was collected after each event (rain + runoff or leaching) and the soluble, particulate and total P contents were measured. In November 2008, soil was collected in 2 cm intervals to a depth of 20 cm, in 5 cm intervals to a depth of 40 cm, and in 10 cm intervals to a depth of 70 cm. The soil was dried and ground, and P determined after extraction by anion exchange resin (AER). In experiment 2, samples collected from the Typic Hapludalf near experiment 1 were incubated for 20, 35, 58, 73 and 123 days after applying the following treatments: soil, soil + PS, soil + PL, soil + CS and soil + NPK. Thereafter, the soil was sampled and P was analyzed by AER. The applications of nutrient sources over the years led to an increase in available P and its migration in the soil profile. This led to P transfer via surface runoff and leaching, with the largest transfer being observed in PS and PL treatments, in which most P was applied. The soil available P and P transfer via surface runoff were correlated with the amounts applied, regardless of the P source. However, P transfer by leaching was not correlated with the applied nutrient amount, but rather with the solution amount leached in the soil profile.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Knowledge of the soil water retention curve (SWRC) is essential for understanding and modeling hydraulic processes in the soil. However, direct determination of the SWRC is time consuming and costly. In addition, it requires a large number of samples, due to the high spatial and temporal variability of soil hydraulic properties. An alternative is the use of models, called pedotransfer functions (PTFs), which estimate the SWRC from easy-to-measure properties. The aim of this paper was to test the accuracy of 16 point or parametric PTFs reported in the literature on different soils from the south and southeast of the State of Pará, Brazil. The PTFs tested were proposed by Pidgeon (1972), Lal (1979), Aina & Periaswamy (1985), Arruda et al. (1987), Dijkerman (1988), Vereecken et al. (1989), Batjes (1996), van den Berg et al. (1997), Tomasella et al. (2000), Hodnett & Tomasella (2002), Oliveira et al. (2002), and Barros (2010). We used a database that includes soil texture (sand, silt, and clay), bulk density, soil organic carbon, soil pH, cation exchange capacity, and the SWRC. Most of the PTFs tested did not show good performance in estimating the SWRC. The parametric PTFs, however, performed better than the point PTFs in assessing the SWRC in the tested region. Among the parametric PTFs, those proposed by Tomasella et al. (2000) achieved the best accuracy in estimating the empirical parameters of the van Genuchten (1980) model, especially when tested in the top soil layer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vegetable production in conservation tillage has increased in Brazil, with positive effects on the soil quality. Since management systems alter the quantity and quality of organic matter, this study evaluated the influence of different management systems and cover crops on the organic matter dynamics of a dystrophic Red Latosol under vegetables. The treatments consisted of the combination of three soil tillage systems: no-tillage (NT), reduced tillage (RT) and conventional tillage (CT) and of two cover crops: maize monoculture and maize-mucuna intercrop. Vegetables were grown in the winter and the cover crops in the summer for straw production. The experiment was arranged in a randomized block design with four replications. Soil samples were collected between the crop rows in three layers (0.0-0.05, 0.05-0.10, and 0.10-0.30 m) twice: in October, before planting cover crops for straw, and in July, during vegetable cultivation. The total organic carbon (TOC), microbial biomass carbon (MBC), oxidizable fractions, and the carbon fractions fulvic acid (C FA), humic acid (C HA) and humin (C HUM) were determined. The main changes in these properties occurred in the upper layers (0.0-0.05 and 0.05-0.10 m) where, in general, TOC levels were highest in NT with maize straw. The MBC levels were lowest in CT systems, indicating sensitivity to soil disturbance. Under mucuna, the levels of C HA were lower in RT than NT systems, while the C FA levels were lower in RT than CT. For vegetable production, the C HUM values were lowest in the 0.05-0.10 m layer under CT. With regard to the oxidizable fractions, the tillage systems differed only in the most labile C fractions, with higher levels in NT than CT in the 0.0-0.05 m layer in both summer and winter, with no differences between these systems in the other layers. The cabbage yield was not influenced by the soil management system, but benefited from the mulch production of the preceding maize-mucuna intercrop as cover plant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Improvements in working conditions, sustainable production, and competitiveness have led to substantial changes in sugarcane harvesting systems. Such changes have altered a number of soil properties, including iron oxides and organic matter, as well as some chemical properties, such as the maximum P adsorption capacity of the soil. The aim of this study was to characterize the relationship between iron oxides and the quality of organic matter in sugarcane harvesting systems. For that purpose, two 1 ha plots in mechanically and manually harvested fields were used to obtain soil samples from the 0.00-0.25 m soil layer at 126 different points. The mineralogical, chemical, and physical results were subjected to descriptive statistical analyses, such as the mean comparison test, as well as to multivariate statistical and principal component analyses. Multivariate tests allowed soil properties to be classified in two different groups according to the harvesting method: manual harvest with the burning of residual cane, and mechanical harvest without burning. The mechanical harvesting system was found to enhance pedoenvironmental conditions, leading to changes in the crystallinity of iron oxides, an increase in the humification of organic matter, and a relative decrease in phosphorus adsorption in this area compared to the manual harvesting system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The no-till system with complex cropping sequences may improve the structural quality and carbon (C) sequestration in soils of the tropics. Thus, the objective of this study was to evaluate the effects of cropping sequences after eight years under the no-till system on the physical properties and C sequestration in an Oxisol in the municipality of Jaboticabal, Sao Paulo, Brazil. A randomized split-block design with three replications was used. The treatments were combinations of three summer cropping sequences - corn/corn (Zea mays L.) (CC), soybean/soybean (Glycine max L. Merryll) (SS), and soybean-corn (SC); and seven winter crops - corn, sunflower (Helianthus annuus L.), oilseed radish (Raphanus sativus L.), pearl millet (Pennisetum americanum (L.) Leeke), pigeon pea (Cajanus cajan (L.) Millsp), grain sorghum (Sorghum bicolor (L.) Moench), and sunn hemp (Crotalaria juncea L.). Soil samples were taken at the 0-10 cm depth after eight years of experimentation. Soil under SC and CC had higher mean weight diameter (3.63 and 3.55 mm, respectively) and geometric mean diameter (3.55 and 2.92 mm) of the aggregates compared to soil under SS (3.18 and 2.46 mm). The CC resulted in the highest soil organic C content (17.07 g kg-1), soil C stock (15.70 Mg ha-1), and rate of C sequestration (0.70 Mg ha-1 yr-1) among the summer crops. Among the winter crops, soil under pigeon pea had the highest total porosity (0.50 m³ m-3), and that under sunn hemp had the highest water stable aggregates (93.74 %). In addition, sunn hemp did not differ from grain sorghum and contained the highest soil organic C content (16.82 g kg-1) and also had the highest rate of C sequestration (0.67 Mg ha-1 yr-1). The soil resistance to penetration was the lower limit of the least limiting water range, while the upper limit was air-filled porosity for soil bulk densities higher than 1.39 kg dm-3 for all cropping sequences. Within the SC sequence, soil under corn and pigeon pea increased least limiting water range by formation of biopores because soil resistance to penetration decreased with the increase in soil bulk density.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of urban waste compost as nutrient source in agriculture has been a subject of investigation in Brazil and elsewhere, although the effects on soil physical and chemical properties and processes are still poorly known. The aim of this study was to evaluate the effect of application of urban waste compost and mineral fertilizer on soil aggregate stability and organic carbon and total nitrogen content of a Rhodic Hapludox under no-tillage in the northwestern region of Rio Grande do Sul, Brazil, in the 2009/2010 and 2010/2011 growing seasons. The experiment was arranged in a 2 × 6 (seasons and fertilization) factorial in a randomized complete block design with four replications. The factor time consisted of two growing seasons (sunflower in 2009/10 and maize in 2010/11) and the factor fertilization of five rates of urban waste compost (0, 25, 50, 75 and 100 m³ ha-1), and mineral fertilizer. Soil samples were collected from the 0.0-0.10 m layer to determine aggregate stability (mean weight and geometric diameter), soil organic carbon (SOC) and total nitrogen (TN). Rates of up to 75 m³ ha-1 of urban waste compost, after two years of application to no-tillage maize and sunflower, improved aggregation compared to mineral fertilization in a Rhodic Hapludox. After the second crop, the SOC and TN contents increased linearly with the levels of urban waste compost.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phosphate release kinetics from manures are of global interest because sustainable plant nutrition with phosphate will be a major concern in the future. Although information on the bioavailability and chemical composition of P present in manure used as fertilizer are important to understand its dynamics in the soil, such studies are still scarce. Therefore, P extraction was evaluated in this study by sequential chemical fractionation, desorption with anion-cation exchange resin and 31P nuclear magnetic resonance (31P-NMR) spectroscopy to assess the P forms in three different dry manure types (i.e. poultry, cattle and swine manure). All three methods showed that the P forms in poultry, cattle and swine dry manures are mostly inorganic and highly bioavailable. The estimated P pools showed that organic and recalcitrant P forms were negligible and highly dependent on the Ca:P ratio in manures. The results obtained here showed that the extraction of P with these three different methods allows a better understanding and complete characterization of the P pools present in the manures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crop residues on the soil surface of no-till systems can intensify ammonia volatilization from N fertilizers applied to cereal crops. This study assessed the magnitude of N losses through ammonia volatilization from urea applied to no-till winter (wheat) and summer crops (maize) on a Typic Hapludox in the south-central region of Paraná, southern Brazil. In addition, the potential of alternative N sources (urea with urease inhibitor, liquid fertilizer, ammonium nitrate and ammonium sulfate) and different urea managements (fertilizer applied in the morning or afternoon) were evaluated. Two experiments with maize and wheat were carried out for two years, arranged in a randomized block design with four replications. Nitrogen volatilization losses were assessed with a semi-open static collector until 21 days after fertilization. In winter, the losses were low (<5.5 % of applied N) for all N sources, which were not distinguishable, due to the low temperatures. In the summer, volatilization rates from urea were higher than in the winter, but did not exceed 15 % of applied N. The main factor decreasing N losses in the summer was the occurrence of rainfall in the first five days after fertilization. Urea with urease inhibitor, nitrate and ammonium sulfate were efficient to decrease ammonia volatilization in maize, whereas the application time (morning or afternoon) had no influence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Visible and near infrared (vis-NIR) spectroscopy is widely used to detect soil properties. The objective of this study is to evaluate the combined effect of moisture content (MC) and the modeling algorithm on prediction of soil organic carbon (SOC) and pH. Partial least squares (PLS) and the Artificial neural network (ANN) for modeling of SOC and pH at different MC levels were compared in terms of efficiency in prediction of regression. A total of 270 soil samples were used. Before spectral measurement, dry soil samples were weighed to determine the amount of water to be added by weight to achieve the specified gravimetric MC levels of 5, 10, 15, 20, and 25 %. A fiber-optic vis-NIR spectrophotometer (350-2500 nm) was used to measure spectra of soil samples in the diffuse reflectance mode. Spectra preprocessing and PLS regression were carried using Unscrambler® software. Statistica® software was used for ANN modeling. The best prediction result for SOC was obtained using the ANN (RMSEP = 0.82 % and RPD = 4.23) for soil samples with 25 % MC. The best prediction results for pH were obtained with PLS for dry soil samples (RMSEP = 0.65 % and RPD = 1.68) and soil samples with 10 % MC (RMSEP = 0.61 % and RPD = 1.71). Whereas the ANN showed better performance for SOC prediction at all MC levels, PLS showed better predictive accuracy of pH at all MC levels except for 25 % MC. Therefore, based on the data set used in the current study, the ANN is recommended for the analyses of SOC at all MC levels, whereas PLS is recommended for the analysis of pH at MC levels below 20 %.