1000 resultados para organic colorants
Resumo:
Three kinds of hybrid organic/inorganic Langmuir-Blodgett films are obtained by the compact organization of poly (1, 2-dihydro-2,2,4-trimethyl)quinoline (abridged as PQ), octadecylamine(abridged as OA) and rare earth-substituted heteropolyanions [abridged as RE(PW11,)(2), RE=Ce-II, Eu-II, Gd-II] using the Langmuir-Blodgett technique. They are characterized by the pi-A isotherms, the absorption spectra, the fluorescence spectra and the atomic force microscope. The scanning tunneling microscopy shows that the conductivity of the hybrid LB films is much better after heteropolyanions having been incorporated in the films.
Resumo:
Novel photochromic inorganic-organic multilayers composed of polyoxometalates and poly(ethylenimine) have been prepared by the layer-by-layer (LbL) self-assembly method. The growth process, composition, surface topography, and photochromic properties of the multilayer films were investigated by UV-visible and Fourier transform infrared spectroscopy, atomic force microscopy, electrospin resonance (ESR), and X-ray photoelectron spectroscopy (XPS). Irradiated with ultraviolet light, the transparent films changed from colorless to blue. Moreover, the blue films showed good reversibility of photochromism, and could recover the colorless state gradually in air, where oxygen plays an important role in the bleaching process. On account of the ESR and XPS results, parts of W6+ in multilayers were reduced to W5+, which exhibited a characteristic blue; a possible photochromic mechanism can be speculated. This work provides basic guideline for the assembly of multilayers with photochromic properties.
Resumo:
Mononuclear Cu-I complexes with mixed ligands are used to fabricate green phosphorescent organic light-emitting diodes. The electroluminescence (EL) maximum at 524 nm coincides well with its photoluminescent (PL) spectrum in poly(methyl methacrylate) film (see Figure). A maximum current efficiency of 10.5 cd A(-1) at 105 cd m(-2) and a maximum brightness up to 1663 cd m(-2) are
Resumo:
Novel hole-transporting molecules containing 1,4-bis(carbazolyl)benzene as a central unit and different numbers of diphenylamine moieties as the peripheral groups have been synthesized and characterized. These compounds are thermally stable with high glass transition temperatures of 141-157 degreesC and exhibit chemically reversible redox processes. Their amorphous state stability and hole transport properties can be significantly improved by increasing the number of diphenylamine moieties in the outer part and by controlling the symmetry of the carbazole-based molecules. These compounds can be used as good hole-tran sporting materials for organic electroluminescent (EL) devices. The device performance based on tri- and tetra-substituted carbazole derivatives is comparable to that of a typical 4,4'-bis[N-(1-naphthyl)-N-phenylamino] biphenyl (NPB)-based device.
Resumo:
Photoluminescent multilayers were fabricated by layer-by-layer deposition between europium-substituted heteropolytungstate K-13 [Eu(SiW11O39)(2)].28H(2)O (denoted ESW) and a cationic polymer of quaternized poly(4-vinylpyridine) partially complexed with osmium bis(2,2'-bipyridine) (denoted as QPVP-Os) on glassy carbon and quartz substrates. The resulting photoluminescent organic-inorganic hybrid multilayers were characterized by electrochemical impedance spectroscopy, UV-Vis absorption spectrometry, cyclic voltammetry and photoluminescence spectra. Electrochemical impedance spectroscopy, UV-Vis absorption spectrometry and cyclic voltammetry results demonstrated that the multilayers were regular growth each layer adsorption. The photoluminescent properties of the films at room temperature were investigated to show the characteristic Eu3+ emission pattern of D-5(0) --> (7) F-j.
Resumo:
An organic semiconductor that can be mass produced is synthesized by end-capping quaterthiophene with naphthyl units (NaT4). An organic thin-film transistor (OTFT, see figure) has been fabricated using this organic semiconductor, and exhibits stability under ambient conditions with a mobility of up to 0.40 cm(2) V-1 s(-1).
Resumo:
Ambipolar organic field-effect transistors (OFETs) are produced, based on organic heterojunctions fabricated by a two-step vacuum-deposition process. Copper phthalocyanine (CuPc) deposited at a high temperature (250 degrees C) acts as the first (p-type component) layer, and hexadecafluorophthalocyaninatocopper (F16CuPc) deposited at room temperature (25 degrees C) acts as the second (n-type component) layer. A heterojunction with an interpenetrating network is obtained as the active layer for the OFETs. These heterojunction devices display significant ambipolar charge transport with symmetric electron and hole mobilities of the order of 10(-4) cm(2) V-1 s(-1) in air. Conductive channels are at the interface between the F16CuPc and CuPc domains in the interpenetrating networks. Electrons are transported in the F16CuPc regions, and holes in the CuPc regions. The molecular arrangement in the heterojunction is well ordered, resulting in a balance of the two carrier densities responsible for the ambipolar electrical characteristics. The thin-film morphology of the organic heterojunction with its interpenetrating network structure can be controlled well by the vacuum-deposition process.
Resumo:
Ceramic carbon materials were developed as new sorbents for solid-phase extraction of organic compounds using chlorpromazine as a representative. The macroporosity and heterogeneity of ceramic carbon materials allow extracting a large amount of chlorpromazine over a short time. Thus, the highly sensitive and selective determination of chlorpromazine in urine sample was achieved by differential pulse voltammograms after only 1-min extraction. The total analysis time was less than 3 min. In comparison with other electrochemical and electrochemi-luminescent methods following 1-min extraction, the proposed method improved sensitivity by about 2 and 1 order of magnitude, respectively. The fast extraction, diversity, and conductivity of ceramic carbon materials make them promising sorbents for various solid-phase extractions, such as solid-phase microextraction, thin-film microextraction, and electrochemically controlled solidphase extraction. The preliminary applications of ceramic carbon materials in chromatography were also studied.
Resumo:
In the organic-inorganic perovskites family, the < 100 >-oriented type has been extensively investigated as a result of its unique magnetic, optical, and electrical properties, and only one type of < 110 >-oriented hybrid perovskite stabilized by methylammonium and iodoformamidinium cations or the latter themselves has been known so far. In this paper, another novel < 110 >-oriented organic-inorganic perovskite (C6H13N3)-PbBr4 (compound 1) has been prepared by reacting N-(3-aminopropyl)imidazole (API) with PbBr2 in hydrobromic acid. The crystal structure is determined, which indicates that the perovskite is stabilized by API. The introduction of the optically active organic ligand API into the hybrid perovskite results in a red shift and a great enhancement of photoluminescence in the perovskite with respect to organic ligand API itself. These results have been explained according to calculation based on density-functional theory. Moreover, the excellent film processing ability for the perovskite (C6H13N3)PbBr4 together with the improved optical properties makes it have potential application in optoelectronic devices.
Resumo:
Two novel phenanthrene-based conjugated oligomers were synthesized and used as p-channel semiconductors in field-effect transistors; they exhibit high mobility and excellent stability during long-time ambient storage and under UV irradiation.
Ambipolar organic field-effect transistors with air stability, high mobility, and balanced transport
Resumo:
Ambipolar organic field-effect transistors (OFETs) based on the organic heterojunction of copper-hexadecafluoro-phthalocyanine (F16CuPc) and 2,5-bis(4-biphenylyl) bithiophene (BP2T) were fabricated. The ambipolar OFETs eliminated the injection barrier for the electrons and holes though symmetrical Au source and drain electrodes were used, and exhibited air stability and balanced ambipolar transport behavior. High field-effect mobilities of 0.04 cm(2)/V s for the holes and 0.036 cm(2)/V s for the electrons were obtained. The capacitance-voltage characteristic of metal-oxide-semiconductor (MOS) diode confirmed that electrons and holes are transported at F16CuPc and BP2T layers, respectively. On this ground, complementary MOS-like inverters comprising two identical ambipolar OFETs were constructed.
Resumo:
N-type organic thin-film transistors (OTFTs) employing hexadecafluorophthalocyaninatocopper (F16CuPc) as active layer and p-type copper phthalocyanine (CuPc) as buffer layer are demonstrated. The highest field-effect mobility is 7.6x10(-2) cm(2)/V s. The improved performance was attributed to the decrease of contact resistance due to the introduction of highly conductive F16CuPc/CuPc organic heterojunction. Therefore, current method provides an effective path to improve the performance of OTFTs.
Resumo:
The authors observed a negative differential resistance (NDR) in organic devices consisting of 9,10-bis-(9,9-diphenyl-9H-fluoren-2-yl)-anthracene (DPFA) sandwiched between Ag and indium tin oxide electrodes. The large NDR shown in current-voltage characteristics is reproducible, resulting in that the organic devices can be electrically switched between a high conductance state (on state) and a low conductance state (off state). It can be found that the currents at both on to off states are space-charge limited and attributed to the electron traps at the Ag/DPFA interface. The large and reproducible NDR makes the devices of tremendous potential in low power memory and logic circuits.
Resumo:
A phosphorescent multiple emissive layer, in which a blue emissive layer is sandwiched between red and green ones, is employed in a white organic light-emitting device (OLED). This OLED has a maximum luminance of 48 000 cd/m(2) at 17 V, a maximum power efficiency of 9.9 lm/W at 4 V, and a color rendering index of 82. In addition, the emission color of this device is fairly stable at high luminances: its Commission Internationale de l(')Eclairage coordinate slightly changes from (0.431, 0.436) to (0.400, 0.430) when the luminance ranges from 2000 to 40 000 cd/m(2).
Resumo:
In this paper, a simple route to the fabrication of palladium nanosheets is described. The interaction of palladium chloride (PdCl2) and n-octylamine salt resulted in the formation of a quasi-perovskite-type composite with a layered structure on a molecular scale. This composite can be employed as a template for preparing ultrathin Pd nanosheets when a {PdCl4}(2-) network is reduced in situ by hydrogen in toluene. The x-ray diffraction results indicate that the resulting Pd nanosheets are highly ordered, and they are confined inside the organic matrix as evidenced by high resolution transmission electron microscopy. These Pd nanosheets can be reorganized into layered structures in non-polarized organic solvent when the ordered structure is destroyed. This method of preparing Pd nanosheets is expected to be applicable to other layered organic/inorganic perovskite systems for obtaining the corresponding metal nanosheets.