995 resultados para organic coffee


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We fabricated efficient top-emitting organic light-emitting diodes (OLEDs) with silver (Ag) as an anode and samarium (Sm) as a semi-transparent cathode. The hole-injection barrier at the Ag anode/hole transporter interface is reduced by inserting a buffer layer of vanadium oxide (V2O5) between them. The ultraviolet photoelectron spectroscopy analysis shows that the hole-injection barrier is reduced by 0.5 eV. Both the V2O5 thickness and the organic layer thickness are optimized. The optimized device achieves a maximum current efficiency of 5.46 cd A(-1) and a power efficiency of 3.90 lm W-1, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two series of oligothiophenes (OThs), NaTn and TNTn (n = 2-6 represents the number of thiophene rings), end-capped with naphthyl and thionaphthyl units have been synthesized by means of Stille coupling. Their thermal properties, optical properties, single crystal structures, and organic field-effect transistor performance have been characterized. All oligomers display great thermal stability and crystallinity. ne crystallographic structures of NaT2, NaT3, TNT2, and TNT3 have been determined. The crystals of NaT2 and NaT3 are monoclinic with space group P2(1)/C, while those of TNT2 and TNT3 are triclinic and orthorhombic with space groups P-1(-) and P2(1)2(1)2(1), respectively. All oligomers adopt the well-known herringbone packing-mode in crystals with packing parameters dependent on the structure of the end-capping units and the number of thiophene rings. The shorter intermolecular distance in NaT3 compared to NaT2 indicates that the intermolecular interaction principally increases with increasing molecular length. X-ray diffraction and atomic force microscopy (AFM) characterization indicate that the NaTn oligomers can form films with better morphology and high molecular order than TNTn oligomers with the same number of thiophene rings. The NaTn oligomers exhibit mobilities that are much higher than those for TNTn oligomers (0.028-0.39 cm(2) V-1 s(-1) versus 0.010-0.055 cm(2) V-1 s(-1), respectively).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the detailed conversion process of the dominant electroluminescence (EL) mechanism in a device with Eu(TTA)(3)phen (TTA=thenoyltrifluoroacetone, phen=1,10-phenanthroline) doped CBP (4,4(')-N,N-'-dicarbazole-biphenyl) film as the emitting layer was investigated by analyzing the evolution of carrier distribution on dye and host molecules with increasing voltage. Firstly, it was confirmed that only electrons can be trapped in Eu(TTA)(3)phen doped CBP. As a result, holes and electrons would be situated on CBP and Eu(TTA)(3)phen molecules, respectively, and thus creates an unbalanced carrier distribution on both dye and host molecules. With the help of EL and photoluminescence spectra, the distribution of holes and electrons on both Eu(TTA)(3)phen and CBP molecules was demonstrated to change gradually with increasing voltage. Therefore, the dominant EL mechanism in this device changes gradually from carrier trapping at relatively low voltage to Forster energy transfer at relatively high voltage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have fabricated and measured a series of electroluminescent devices with the structure of ITO/TPD/Eu(TTA)(3)phen (x):CBP/BCP/ ALQ/LiF/Al, where x is the weight percentage of Eu(TTA)3phen (from 0% to 6%). At very low current density, carrier trapping is the dominant luminescent mechanism and the 4% doped device shows the highest electroluminescence (EL) efficiency among all these devices. With increasing current density, Forster energy transfer participates in EL process. At the current density of 10.0 and 80.0mA/ cm(2), 2% and 3% doped devices show the highest EL efficiency, respectively. From analysis of the EL spectra and the EL efficiency-current density characteristics, we found that the EL efficiency is manipulated by Forster energy transfer efficiency at high current density. So we suggest that the dominant luminescent mechanism changes gradually from carrier trapping to Forster energy transfer with increasing current density. Moreover, the conversion of dominant EL mechanism was suspected to be partly responsible for the EL efficiency roll-off because of the lower EL quantum efficiency of Forster energy transfer compared with carrier trapping.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several organic electroluminescent devices with different device structures were fabricated based on an organosamarium complex Sm(HFNH)(3)phen[HFNH=4, 4, 5, 5, 6, 6, 6-heptafluoro-l-(2-naphthvl)hexane-1, 3-dione; phen=1, 10-phenanthroline] as emitter. Their electroluminescent properties were investigated in detail. Although the devices with the optimal structure ITO/TPD (50nm)/ Sm(HFNH)(3)phen (xwt%):CBP (50nm)/BCP (20nm)/AIQ (30nm)/LiF (1 nm),/Al (200nm) show high brightness (more than 400cd/m(2)) and high current efficiency (about 1 cd/A), there are emissions from CBP, BCP and even from AIQ existing in the electroluminescence (EL) spectra besides emission from Sm(HFNH)(3)Phen. The reason to this was discussed. The device with the structure ITO/TPD (50 nm)/ Sm(HFNH)(3)phen (50 nm)/AIQ (30 nm)/LiF (1 nm)/Al (200 nm) exhibits the maximum brightness of 118 cd/m(2) and current efficiency of 0.029 cd/A, and shows emissions from AIQ and Sm(HFNH)(3)phen at high voltages. However, with the BCP hole-block layer added, the device [ITO/TPD (50 nm)/Sm(HFNH)(3)phen (50 nm)/BCP (20 nm)/AIQ (30 nm)/LiF (1 nm)/Al (200 nm)] exhibits pure Sm3+ emission in 2 the EL spectra even at high voltages, with the maximum current efficiency of 0.29cd/A and brightness of 82cd/m(2)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We fabricated organic photovoltaic cells by using hexadecafluorophthalocyaninatocopper (F16CuPc) as electron acceptor material and para-sexiphenyl (p-6P) as electron donor material. F16CuPc has wide absorption spectrum from 550 nm to 850 nm, which covers the maximum of solar photo flux. The measurement of their external quantum efficiency (EQE) demonstrated that the photocurrent comes from the excitons created in F16CuPc, which were separated into free electrons and holes at heterojunction interface of p-6P and F16CuPc. Moreover, F(16)FuPc with excellent air-stability improved the environmental stability of photovoltaic cells, and the unencapsulated cells exhibited the shelf lifetime of exceeding a week.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The authors investigated the switch-on transient properties of p-type vanadium phthalocyanine (VOPc) transistors, which were fabricated by weak epitaxy growth on ordered para-sexiphenyl (p-6P) layer. The overshoot phenomenon of drain current had been observed in the VOPc/p-6P transistors, which was explained by the filling of carriers in traps of organic films. The small overshoot value of about 35% and transient duration time of 2 ms demonstrated the low trap concentration in organic films, which were comparable to the reported hydrogenated amorphous-silicon thin-film transistors. Therefore, the VOPc/p-6P transistors can be applied in active matrix liquid crystal display as switch elements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The organic films of vanadyl-phthalocyanine (VOPc) compounds showed weak epitaxy growth (WEG) behavior on thin ordered para-sexiphenyl (p-6P) layer with high substrate temperature. The WEG of VOPc molecules standing up on the p-6P layer leaded to high in-plane orientation and their layer-by-layer growth behavior. In consequence, high quality VOPc films were obtained, which were consisted of lamellar crystals. Organic field-effect transistors with VOPc/p-6P films as active layers realized high mobility of above 1 cm(2)/V s. This result indicated that nonplanar compounds can obtain a device performance better than planar compounds, therefore, it may provide a rule to find disklike organic semiconductor materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin films of phthalocyanine compounds show weak epitaxial growth on a monodomain film of a rod-like molecule (see figure). The resulting organic electronic devices exhibit high charge carrier mobilities close to those of the single-crystal devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relationship between the performance characteristics of organic field-effect transistors (OFETs) with 2,5-bis(4-biphenylyl)-bithiophene/copper hexadecafluorophthalocyanine (BP2T/F16CuPc) heterojunctions and the thickness of the BP2T bottom layer is investigated. Three operating modes (n-channel, ambipolar, and p-channel) are obtained by varying the thickness of the organic semiconductor layer. The changes in operating mode are attributable to the morphology of the film and the hetero-junction effect, which also leads to an evolution of the field-effect mobility with increasing film thickness. In BP2T/F16CuPc heterojunctions the mobile charge carriers accumulate at both sides of the heterojunction interface, with an accumulation layer thickness of ca. 10 nm. High field-effect mobility values can be achieved in continuous and flat films that exhibit the heterojunction effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the absorption spectral characteristics and color-change reaction mechanism of cobalt(II) chloride(COCl2) in alcohol organic solvents has been investigated in the presence of water, and then the optimum conditions for determining the water content in the solvents were selected. Results indicated that the absorption spectra Of COCl2 in alcohols decreased with the increment of water content. At the maximum absorption wavelength of 656 nm, there were good linear relationships between the logarithm of the absorbance and the water content in organic solvents such as ethanol, n-propanol, iso-propanol and n-butanol with related coefficients in the range of 0.9996 similar to 0.9998. For determining water content in organic solvents, this method is simple, rapid, sensitive, reproducible and environmentally friendly. Furthermore, the linear range cannot restrict determination of the water content in organic solvents. This method had been applied to determine the water content in ethanol and n-butanol with satisfactory recovery of water in n-butanol between 98.41%-101.29%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate extremely stable and highly efficient organic light-emitting diodes (OLEDs) based on molybdenum oxide (MoO3) as a buffer layer on indium tin oxide (ITO). The significant features of MoO3 as a buffer layer are that the OLEDs show low operational voltage, high electroluminescence (EL) efficiency and good stability in a wide range of MoO3 thickness. A green OLED with structure of ITO/MoO3/N,N-'-di(naphthalene-1-yl)-N,N-'-diphenyl-benzidene (NPB)/NPB: tris(8-hydroxyquinoline) aluminum (Alq(3)):10-(2-benzothiazolyl)-2,3,6,7-tetrahydro-1,1,7,7-tetramethyl-1H, 5H, 11H-(1)-benzopyropyrano(6,7-8-i,j)quinolizin-11-one (C545T)/Alq(3)/LiF/Al shows a long lifetime of over 50 000 h at 100 cd/m(2) initial luminance, and the power efficiency reaches 15 lm/W. The turn-on voltage is 2.4 V, and the operational voltage at 1000 cd/m(2) luminance is only 6.9 V. The significant enhancement of the EL performance is attributed to the improvement of hole injection and interface stability at anode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of europium complexes were synthesized and their electroluminescent (EL) characteristics were studied. It was found by comparison that the different substituted groups, such as methyl, chlorine, and nitryl, on ligand 1,10-phenanthroline affect significantly the EL performance of devices based on these complexes. The more methyl-substituted groups on ligand 1,10-phenanthroline led to higher device efficiency. A chlorine-substituted group showed the approximate EL performance as two methyl-substituted groups, whereas a nitryl substituent reduced significantly the EL luminous efficiency. However, beta-diketonate ligand TTA and DBM exhibited similar EL performance. The improved EL luminous efficiency by proper substituted groups on the 1, 10-phenanthroline was attributed to the reduction of the energy loss caused by light hydrogen atom vibration, as well as concentration quenching caused by intermolecular interaction, and the match of energy level between the ligand and Eu3+.