919 resultados para organ scaffold


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hyperthermia and local drug delivery have been proposed the potential therapeutic approaches for bone defects resulting from malignant bone tumors. Development of bioactive materials with magnetic and drug-delivery properties may potentially meet this target. The aim of this study is to develop a multifunctional mesoporous bioactive glass (MBG) scaffold system for both hyperthermia and local-drug delivery application potentially. For this aim, Iron (Fe) containing MBG (Fe-MBG) scaffolds with hierarchically large pores (300-500 µm) and fingerprint-like mesopores (4.5 nm) have been successfully prepared. The effect of Fe on the mesopore structure, physiochemical, magnetism, drug delivery and biological properties of MBG scaffolds has been systematically investigated. The results showed that the morphology of the mesopore varied from straight channels to curved fingerprint-like channels after incorporated parts of Fe into MBG scaffolds. The magnetism magnitude of MBG scaffolds can be tailored by controlling Fe contents. Furthermore, the incorporating of Fe into mesoporous MBG glass scaffolds enhanced the mitochondrial activity and bone-relative gene (ALP and OCN) expression of human bone marrow mesenchymal stem cells (BMSCs) on the scaffolds. The obtained Fe-MBG scaffolds also possessed high specific surface areas and sustained drug delivery. Therefore, Fe-MBG scaffolds are magnetic, degradable and bioactive. The multifunction of Fe-MBG scaffolds indicates that there is a great potential for Fe-MBG scaffolds to be used for the therapy and regeneration of large-bone defects caused by malignant bone tumors through the combination of hyperthermia, local drug delivery and their osteoconductivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background and Purpose Although plantar fascial thickening is a sonographic criterion for the diagnosis of plantar fasciitis, the effect of local loading and structural factors on fascial morphology are unknown. The purposes of this study were to compare sonographic measures of fascial thickness and radiographic measures of arch shape and regional loading of the foot during gait in individuals with and without unilateral plantar fasciitis and to investigate potential relationships between these loading and structural factors and the morphology of the plantar fascia in individuals with and without heel pain. Subjects The participants were 10 subjects with unilateral plantar fasciitis and 10 matched asymptomatic controls. Methods Heel pain on weight bearing was measured by a visual analog scale. Fascial thickness and static arch angle were determined from bilateral sagittal sonograms and weight-bearing lateral foot roentgenograms. Regional plantar loading was estimated from a pressure plate. Results On average, the plantar fascia of the symptomatic limb was thicker than the plantar fascia of the asymptomatic limb (6.1±1.4 mm versus 4.2±0.5 mm), which, in turn, was thicker than the fascia of the matched control limbs (3.4±0.5 mm and 3.5±0.6 mm). Pain was correlated with fascial thickness, arch angle, and midfoot loading in the symptomatic foot. Fascial thickness, in turn, was positively correlated with arch angle in symptomatic and asymptomatic feet and with peak regional loading of the midfoot in the symptomatic limb. Discussion and Conclusion The findings indicate that fascial thickness and pain in plantar fasciitis are associated with the regional loading and static shape of the arch.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Scaffolds with open-pore morphologies offer several advantages in cell-based tissue engineering, but their use is limited by a low cell seeding efficiency. We hypothesized that inclusion of a collagen network as filling material within the open-pore architecture of polycaprolactone-tricalcium phosphate (PCL-TCP) scaffolds increases human bone marrow stromal cells (hBMSC) seeding efficiency under perfusion and in vivo osteogenic capacity of the resulting constructs. PCL-TCP scaffolds, rapid prototyped with a honeycomb-like architecture, were filled with a collagen gel and subsequently lyophilized, with or without final crosslinking. Collagen-free scaffolds were used as controls. The seeding efficiency was assessed after overnight perfusion of expanded hBMSC directly through the scaffold pores using a bioreactor system. By seeding and culturing freshly harvested hBMSC under perfusion for 3 weeks, the osteogenic capacity of generated constructs was tested by ectopic implantation in nude mice. The presence of the collagen network, independently of the crosslinking process, significantly increased the cell seeding efficiency (2.5-fold), and reduced the loss of clonogenic cells in the supernatant. Although no implant generated frank bone tissue, possibly due to the mineral distribution within the scaffold polymer phase, the presence of a non crosslinked collagen phase led to in vivo formation of scattered structures of dense osteoids. Our findings verify that the inclusion of a collagen network within open morphology porous scaffolds improves cell retention under perfusion seeding. In the context of cell-based therapies, collagen-filled porous scaffolds are expected to yield superior cell utilization, and could be combined with perfusion-based bioreactor devices to streamline graft manufacture.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Some of my most powerful spiritual experiences have come from the splendorous and sublime sounding hymns performed by a choir and church organ at the traditional Anglican church I’ve attended since I was very young. In the later stage of my life, my pursuit of education in the field of engineering caused me to move to Australia where I regularly attended a contemporary evangelical church and subsequently became a music director in the faith community. This environmental and cultural shift altered my perception and musical experiences of Christian music and led me to enquire about the relationship between Christian liturgy and church music. Throughout history church musicians and composers have synthesised the theological, congregational, cultural and musical aspects of church liturgy. Many great composers have taken into account the conditions surrounding the process of sacred composition and arrangement of music to enhance the experience of religious ecstasy – they sought resonances with Christian values and beliefs to draw congregational participation into the light of praising and glorifying God. As a music director in an evangelical church this aspiration has become one I share. I hope to identify and define the qualities of these resonances that have been successful and apply them to my own practice. Introduction and Structure of the Thesis In this study I will examine four purposively selected excerpts of Christian church vocal music combining theomusicological and semiotic analysis to help identify guidelines that might be useful in my practice as a church music director. The four musical excerpts have been selected based upon their sustained musical and theological impact over time, and their ability to affect ecstatic responses from congregations. This thesis documents a personal journey through analysis of music and uses a context that draws upon ethno-musicological, theological and semiotic tools that lead to a preliminary framework and principles which can then be applied to the identified qualities of resonance in church music today. The thesis is comprised of four parts. Part 1 presents a literature study on the relationship between sacred music, the effects of religious ecstasy and the Christian church. Multiple lenses on this phenomenon are drawn from the viewpoints of prominent western church historians, Biblical theologians, and philosophers. The literature study continues in Part 2, where the role of embodiment is examined from the current perspective of cognitive learning environments. This study offers a platform for a critical reflection on two distinctive musical liturgical systems that have treated differently the notion of embodied understanding amidst a shifting church paradigm. This allows an in-depth theological and philosophical understanding of the liturgical conditions around sacred music-making that relates to the monistic and dualistic body/mind. Part 3 involves undertaking a theomusicological methodology that utilises creative case studies of four purposively selected spiritual pieces. A semiotic study focuses on specific sections of sacred vocal works that express the notions of ‘praise’ and ‘glorification’, particularly in relation to these effects,which combine an analysis of theological perspectives around religious ecstasy and particular spiritual themes. Part 4 presents the critiques and findings gathered from the study that incorporate theoretical and technological means to analyse the purposive selected musical artefact, particularly with the sonic narratives expressing notions of ‘Praise' and 'Glory’. The musical findings are further discussed in relation to the notion of resonance, and then a conceptual framework for the role of contemporary musicdirector is proposed. The musical and Christian terminologies used in the thesis are explained in the glossary, and the appendices includes tables illustrating the musical findings, conducted surveys, written musical analyses and audio examples of selected sacred pieces available on the enclosed compact disc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article describes an exercise in collective narrative practice, built around the metaphor of adventure. This metaphor helped to scaffold the development of stories of personal agency for a group of Australian primary school children whose teachers were afraid they might be traumatised by events which occurred during a school excursion. During the excursion, the group of 110 Year 5 and 6 school children had their accommodation broken into on two separate occasions and various belongings stolen. The very brief period made available for ‘debriefing’ was used to introduce the metaphor of adventure, and open up space for the children to begin constructing a story in which they were ‘powerful’, as an alternative to the story of powerlessness and victimhood in which they were initially caught up.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding the complex mechanisms underlying bone remodeling is crucial to the development of novel therapeutics. Glycosaminoglycans (GAGs) localised to the extracellular matrix (ECM) of bone are thought to play a key role in mediating aspects of bone development. The influence of isolated GAGs was studied by utilising in vitro murine calvarial monolayer and organ culture model systems. Addition of GAG preparations extracted from the cell surface of human osteoblasts at high concentrations (5 microg/ml) resulted in decreased proliferation of cells and decreased suture width and number of bone lining cells in calvarial sections. When we investigated potential interactions between the growth factors fibroblast growth factor-2 (FGF2), bone morphogenic protein-2 (BMP2) and transforming growth factor-beta1 (TGFbeta1) and the isolated cell surface GAGs, differences between the two model systems emerged. The cell culture system demonstrated a potentiating role for the isolated GAGs in the inhibition of FGF2 and TGFbeta1 actions. In contrast, the organ culture system demonstrated an enhanced stimulation of TFGbeta1 effects. These results emphasise the role of the ECM in mediating the interactions between GAGs and growth factors during bone development and suggest the GAG preparations contain potent inhibitory or stimulatory components able to mediate growth factor activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The First Year Curriculum Principles espouse a student-focused consistent and explicit curriculum, acknowledging diversity and the need to scaffold skills and learning. Commencing law students are no different to other first year students in that they must deal with changes in teaching and learning approaches and expectations. As well as the generic issues of transition, law students must grapple with learning the skills which are necessary for the study of law from the very start of their degree. A transition program at the commencement of a law degree as part of a planned first year curriculum provides an opportunity to introduce students to the study of law, the requisite skills as well as assist with transition to tertiary education.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In general, the benefits of using cooperative learning include academic achievement, communication skills, problem-solving, social skills and student motivation. Yet cooperative learning as a Western educational concept may be ineffective in a different learning system. The study aims to investigate scaffolding techniques for cooperative learning in Thailand primary education. The program was designed to foster Thai primary school teachers’ cooperative learning implementation that includes the basic tenets of cooperative learning and socio-cognitive based learning. Two teachers were invited to participate in this experimental teacher training program for one and a half weeks. Then the teachers implemented a cooperative learning in their mathematics class for six weeks. The data from teacher interview and classroom observation indicated that the both teachers are able to utilise questions to scaffold their students’ engagement in cooperative learning. This initiative study showed that difficulty or failure of implementing cooperative learning in Thailand education may not be derived from cultural difference. The paper discussed the techniques the participant teachers applied with proactive scaffolding, reactive scaffolding and scaffolding questions that can be used to facilitate the implementation of cooperative learning in Thai school.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pervasiveness of technology in the 21st Century has meant that adults and children live in a society where digital devices are integral to their everyday lives and participation in society. How we communicate, learn, work, entertain ourselves, and even shop is influenced by technology. Therefore, before children begin school they are potentially exposed to a range of learning opportunities mediated by digital devices. These devices include microwaves, mobile phones, computers, and console games such as Playstations® and iPods®. In Queensland preparatory classrooms and in the homes of these children, teachers and parents support and scaffold young children’s experiences, providing them with access to a range of tools that promote learning and provide entertainment. This paper examines teachers’ and parents’ perspectives and considers whether they are techno-optimists who advocate for and promote the inclusion of digital technology, or whether they are they techno-pessimists, who prefer to exclude digital devices from young children’s everyday experiences. An exploratory, single case study design was utilised to gather data from three teachers and ten parents of children in the preparatory year. Teacher data was collected through interviews and email correspondence. Parent data was collected from questionnaires and focus groups. All parents who responded to the research invitation were mothers. The results of data analysis identified a misalignment among adults’ perspectives. Teachers were identified as techno-optimists and parents were identified as techno-pessimists with further emergent themes particular to each category being established. This is concerning because both teachers and mothers influence young children’s experiences and numeracy knowledge, thus, a shared understanding and a common commitment to supporting young children’s use of technology would be beneficial. Further research must investigate fathers’ perspectives of digital devices and the beneficial and detrimental roles that a range of digital devices, tools, and entertainment gadgets play in 21st Century children’s lives.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vascular endothelial growth factor (VEGF) and bone morphogenetic proteins (BMP-7) are key regulators of angiogenesis and osteogenesis during bone regeneration. The aim of this study was to investigate the possibility of realizing sequential release of the two growth factors using a novel composite scaffold. Poly(lactic-co-glycolic acid) (PLGA)-Akermanite (AK) microspheres were used to make the composite scaffold, which was then loaded with BMP-7, followed by embedding in a gelatin hydrogel matrix loaded with VEGF. The release profiles of the growth factors were studied and selected osteogenic related markers of bone marrow stromal cells (BMSCs) were analysed. It was shown that the composite scaffolds exhibited a fast initial burst release of VEGF within the first 3 days and a sustained slow release of BMP-7 over the full period of 20 days. The in vitro proliferation and differentiation of the BMSCs cultured in the osteogenic medium were enhanced by 1 to 2 times, resulting from the additionally and sequentially release of growth factors from the PLGA-AK/gelatin composite scaffolds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Porous SiO2 scaffolds with mesopore structure (named as MS scaffolds) have been proposed as suitable for bone tissue engineering due to their excellent drug-delivery ability; however, the mineralization and cytocompatibility of MS scaffolds are far from optimal for bone tissue engineering, and it is also unclear how the delivery of drugs from MS scaffolds affects osteoblastic cells. The aims of the present study were to improve the mineralization and cytocompatibility of MS scaffolds by coating mussel-inspired polydopamine on the pore walls of scaffolds. The effects of polydopamine modification on MS scaffolds was investigated with respect to apatite mineralization and the attachment, proliferation and differentiation of bone marrow stromal cells (BMSCs), as was the release profile of the drug dexamethasone (DEX). Our results show that polydopamine can readily coat the pore walls of MS scaffolds and that polydopamine-modified MS scaffolds have a significantly improved apatite-mineralization ability as well as better attachment and proliferation of BMSCs in the scaffolds, compared to controls. Polydopamine modification did not alter the release profile of DEX from MS scaffolds but the sustained delivery of DEX significantly improved alkaline phosphatase (ALP) activity of BMSCs in the scaffolds. These results suggest that polydopamine modification is a viable option to enhance the bioactivity of bone tissue engineering scaffolds and, further, that DEX-loaded polydopamine MS scaffolds have potential uses as a release system to enhance the osteogenic properties of bone tissue engineering applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For the filling and reconstruction of non-healing bone defects, the application of porous ceramic scaffold as bone substitutes is considered to be a reasonable choice. In bone tissue engineering, an ideal scaffold must satisfy several criterias such as open porosity, having high compressive strength (it depends where in body, and if external fixatures are used) and the practicability for cell migration. Many researchers have focused on enhancing the mechanical properties of hydroxyapatite scaffolds by combining it with other biomaterials, such as bioglass and polymers. Nevertheless, there is still a lack of suitable scaffolds based on porous biomaterials. In this study, zirconia scaffolds from two different templates (polyurethane (PU) and Acrylonitrile Butadiene Styrene (ABS) templates) were successfully fabricated with dissimilar fabrication techniques. The scaffold surfaces were further modified with mesoporous bioglass for the purpose of bone tissue engineering. In the study of PU template scaffold, high porosity (~88%) sol-gel derived yttria-stabilized zirconia (YSZ) scaffold was prepared by a polyurethane (PU) foam replica method using sol-gel derived zirconia for the first time, and double coated with Mesoporous Bioglass (MBGs) coating. For the ABS template scaffold, two types of templates (cube and cylinder) with different strut spacings were used and fabricated by a 3D Rapid Prototyper. Subsequently, zirconia scaffolds with low porosity (63±2.8% to 68±2.5%) were fabricated by embedding the zirconia powder slurry into the ABS templates and burning out the ABS to produce a uniform porous structure. The zirconia scaffolds were double coated with mesoporous bioglass by dip coating for the first time. The porosities of the scaffolds were calculated before and after coating. The microstructures were then examined using scanning electron microscopy and the mechanical properties were evaluated using compressive test. Accordingly, relationships between microstructure, processing and mechanical behaviour of the porous zirconia was discussed. Scaffold biocompatibility and bioactivity was also evaluated using a bone marrow stromal cell (BMSC) proliferation test and a simulated body fluid test.