964 resultados para orbital TIG welding
Resumo:
A shape phase transition is demonstrated to occur in W-190 by applying the projected shell model, which goes beyond the usual mean-field approximation. Rotation alignment of neutrons in the high-j, i(13/2) orbital drives the yrast sequence of the system, changing suddenly from prolate to oblate shape at angular momentum 10h. We propose observables to test the picture.
Resumo:
The single charge transfer process in He-3(2+)+He-4 collisions is investigated using the quantum-mechanical molecular-orbital close-coupling method, in which the adiabatic potentials and radial couplings are calculated by using the ab initio multireference single- and double-excitation configuration interaction methods. The differential cross sections for the single charge transfer are presented at the laboratorial energies E = 6 keV and 10 keV for the projectile He-3(2+). Comparison with the existing data shows that the present results are better in agreement with the experimental measurements than other calculations in the dominant small angle scattering, which is attributed to the accurate calculations of the adiabatic potentials and the radial couplings.
Resumo:
We utilize slow highly charged ions of Xeq+ and Pbq+ to irradiate GaN crystal films grown on sapphire substrate, and use X-ray photoelectron spectroscopy to analyze its surface chemical composition and chemical state of the elements. The results show that highly charged ions can etch the sample surface obviously, and the GaN sample irradiated by highly charged ions has N depletion or is Ga rich on its surface. Besides, the relative content of Ga-Ga bond increases as the dose and charge state of the incident ions increase. In addition, the binding energy of Ga 3d(5/2) electrons corresponding to Ga-Ga bond of the irradiated GaN sample is smaller compared with that of the Ga bulk material. This can be attributed to the lattice damage, which shifts the binding energy of inner orbital electrons to the lower end.
Resumo:
Parity (P)-odd domains, corresponding to nontrivial topological solutions of the QCD vacuum, might be created during relativistic heavy-ion collisions. These domains are predicted to lead to charge separation of quarks along the orbital momentum of the system created in noncentral collisions. To study this effect, we investigate a three-particle mixed-harmonics azimuthal correlator which is a P-even observable, but directly sensitive to the charge-separation effect. We report measurements of this observable using the STAR detector in Au + Au and Cu + Cu collisions at root s(NN) = 200 and 62 GeV. The results are presented as a function of collision centrality, particle separation in rapidity, and particle transverse momentum. A signal consistent with several of the theoretical expectations is detected in all four data sets. We compare our results to the predictions of existing event generators and discuss in detail possible contributions from other effects that are not related to P violation.
Resumo:
Charmed baryon spectroscopy has been studied under a string model. In this model, charmed baryons are composed of a diquark and a charm quark which are connected by a constant tension. In this diquark picture, the quantum numbers J(P) of confirmed baryons have been well assigned. Energies of the first and second orbital excitations have been predicted and compared with the experimental data. Meanwhile, diquark masses have been extracted in the background of charm quark which satisfy a splitting relation based on spin-spin interaction.
Resumo:
The reactions of (1) CH4 + MgO --> MgOH. + CH3. and (2) CH4 + MgO --> Mg + CH3OH have been studied on the singlet spin state potential energy surface at the MP2/6-311+G(2d,2p) level. These two reaction channels, both involving intermediates and transition states, have been rationalized by the structures of the species involved, natural bond orbital (NBO), and vibrational frequency analysis. We have considered two initial interacting models between CH4 and MgO: a collinear C-H approach to the O end of the MgO forming the MgOCH4 complex with C-3nu symmetry and three hydrogen atoms of the methane point to the Mg end of the MgO forming the OMgCH4 complex with C-1 symmetry. The calculations predict that reactions 1 and 2 are exothermic by 39.8 and 86.5 kJ mol(-1), respectively. Also, the former reaction proceeds more easily than the latter, and the complex HOMgCH3 is energetically preferred in the reaction of MgO + CH4.
Resumo:
轨道机动是航天器执行空间任务的基础,对轨道机动进行优化设计非常重要。 近年来,小推力发动机技术不断成熟,由于小推力发动机具有高比冲、低成本的优点,逐渐被用于轨道机动系统中。小推力轨道机动与常规轨道机动的不同在于小推力情况下,航天器变轨时间长,推力作用时间长,这使小推力轨道机动的优化设计极为困难。因此,小推力轨道机动优化成为航天器轨道机动优化领域的难点和热点,吸引了大批学者的关注和研究。本文对基于进化算法的小推力轨道转移时间-能量优化方法进行了研究。 由于进化算法属于一种参数优化方法,不能直接用于求解泛函形式表示的轨道转移优化问题。因此,本文引入并改进了一种基于Lyapunov反馈控制律的小推力转移轨道设计方法,使用该方法将小推力轨道转移最优控制问题转换成适合进化算法求解的多目标优化问题。 为了求解转换后的多目标优化问题,提出了一种 支配混合多目标进化算法。该算法使用基于 支配概念的选择算子,在保持群体多样性的同时,避免了许多多目标进化算法存在的退化现象。同时,为了改进算法局部搜索能力,将局部搜索方法与算法结合,构造出串行混合算法结构。 数值实验证明,本文提出的方法能够有效求解小推力轨道转移时间-能量优化问题。
Resumo:
The synthesis, structures, photophysics, electrochemistry and electrophosphorescent properties of new red phosphorescent cyclometalated iridium(III) isoquinoline complexes, bearing 9-arylcarbazolyl chromophores, are reported. The functional properties of these red phosphors correlate well with the results of density functional theory calculations. The highest occupied molecular orbital levels of these complexes are raised by the integration of a carbazole unit to the iridium isoquinoline core so that the hole-transporting ability is improved in the resulting complexes relative to those with I-phenylisoquinoline ligands. All of the complexes are highly thermally stable and emit an intense red light at room temperature with relatively short lifetimes that are beneficial for highly efficient organic light-emitting diodes (OLEDs).
Resumo:
The dependence of electron conduction of oligo(1,4-phenylene ethynylene)s (OPEs) on length, terminal group, and main chain structure was examined by conductive probe-atomic force microscopy (CP-AFM) via a metal substrate-molecular wire monolayer-conductive probe junction. The electron transport in the molecular junction was a highest occupied molecule orbital (HOMO)-mediated process following a coherent, non-resonant tunneling mechanism represented by the Simmons equation.
Resumo:
Four novel diimine rhenium(I) carbonyl complexes with the formula [Re(CO)(3)(L) Br], where L = 2-(4-(9H-carbazol-9-yl) phenyl)-1H-imidazo[4,5-f][1,10] phenanthroline (P1), 2-(4-(3,6-di-tert-butyl-9H-carbazol-9-yl) phenyl)-1H-imidazo-[4,5-f][1,10] phenanthroline (P2), 2-(4-(6-(9H-carbazol-9-yl)-9H-3,9'-bicarbazol-9-yl) phenyl)-1H-imidazo[4,5-f][1,10] phenanthroline (D1), and 2-(4-(3', 6'-di-tert-butyl-6-(3,6-di-tert-butyl-9H-carbazol-9-yl)-9H-3,9'-bicarbazol-9-yl) phenyl)-1H-imidazo[4,5-f][1,10] phenanthroline (D2), have been successfully synthesized and fully characterized by (HNMR)-H-1, IR, and UV-Vis, etc. The luminescence quantum yields (LQYs) of the parent Re(I) complexes P1 and P2 are 0.13 and 0.16, respectively, which are much higher than the previously reported Re(I) dendrimers. The HOMOs and the LUMOs of P1 and P2 are calculated to be mainly composed of [d(Re) + pi(CO + Br)] and pi*(L) orbital, respectively.
Resumo:
The electronic and magnetic properties of tetragonal double perovskite Sr2NiOsO6 were studied by use of the density functional theory and including the spin-orbit coupling. Compensated half-metal is found if the spin-orbit coupling is not considered. Spin-orbit coupling induces orbital moments on both Ni and Os, making Sr2NiOsO6 a near compensated half-metal. Ferromagnetic phase is slightly favored over antiferromagnetic phase (by 4 meV). The small energy difference also suggests that both phases are competitive for the ground state. At ferromagnetic phase, the calculated net magnetic moment is 3.53 mu(B), in good agreement with experimental value of 3.44 mu(B). At antiferromagnetic phase, the net magnetic moment is 0.69 mu(B), in which the contribution from the net spin moment is 0.09 mu(B).
Resumo:
The half metallic properties of the recent synthesized Sr2CuOsO6 were predicted by using the density functional theory. The effects of electron correlation and spin-orbit coupling (SOC) were studied. The calculations show that without considering SOC effect, Sr2CuOsO6 is half metallic and ferrimagnetic. By including both electron correlation and spin-orbit coupling, the total spin magnetic moment is 0.89 mu(B), total orbital moment 0.43 mu(B) in opposite direction, making the net magnetic moment 0.46 mu(B). SOC ruins the half metallic character. Crown Copyright (C) 2009 Published by Elsevier B. V. All rights reserved.
Resumo:
A novel class of hosts suitable for solution processing has been developed based on a conjugated dendritic scaffold. By increasing the dendron generation, the highest occupied molecular orbital (HOMO) energy level can be tuned to facilitate hole injection, while the triplet energy remains at a high level, sufficient to host high-energy-triplet emitters. A power-efficient blue-electrophosphorescent device based on H2 (see figure) is presented.
Resumo:
A series of cyclometalating platinum(II) complexes with substituted 9-arylcarbazolyl chromophores have been synthesized and characterized. These complexes are thermally stable and most of them have been characterized by X-ray crystallography. The phosphorescence emissions of the complexes are dominated by (MLCT)-M-3 excited states. The excited state properties of these complexes can be modulated by varying the electronic characteristics of the cyclometalating ligands via substituent effects, thus allowing the emission to be tuned from bright green to yellow, orange and red light. The correlation between the functional properties of these metallophosphors and the results of density functional theory calculations was made. Because of the propensity of the electron-rich carbazolyl group to facilitate hole injection/transport, the presence of such moiety can increase the highest occupied molecular orbital levels and improve the charge balance in the resulting complexes relative to the parent platinum(II) phosphor with 2-phenylpyridine ligand.
Resumo:
The synthesis, isomeric studies, and photophysical characterization of a series of multifunctional cyclometalated iridium(III) complexes containing a fluoro- or methyl-substituted 2[3-(N-plienylcarbazolyl)]pyridine molecular framework are presented. All of the complexes are thermally stable solids and highly efficient electrophosphors. The optical, electrochemical, photo-, and electrophosphorescence traits of these iridium phosphors have been studied in terms of the electronic nature and coordinating site of the aryl or pyridyl ring substituents. The correlation between the functional properties of these phosphors and the results of density functional theory calculations was made. Arising from the propensity of the electron-rich carbazolyl group to facilitate hole injection/transport, the presence of such a moiety can increase the highest-occupied molecular orbital levels and improve the charge balance in the resulting complexes relative to the parent phosphor with 2-phenylpyridine ligands. Remarkably, the excited-state properties can be manipulated through ligand and substituent effects that allow the tuning of phosphorescence energies from bluish green to deep red.