969 resultados para neuro-immune-modulation
Resumo:
The acute myeloid leukaemia (AML)14 trial addressed four therapeutic questions in patients predominantly aged over 60 years with AML and High Risk Myelodysplastic Syndrome: (i) Daunorubicin 50 mg/m(2) vs. 35 mg/m(2); (ii) Cytarabine 200 mg/m(2) vs. 400 mg/m(2) in two courses of DA induction; (iii) for part of the trial, patients allocated Daunorubicin 35 mg/m(2) were also randomized to receive, or not, the multidrug resistance modulator PSC-833 in a 1:1:1 randomization; and (iv) a total of three versus four courses of treatment. A total of 1273 patients were recruited. The response rate was 62% (complete remission 54%, complete remission without platelet/neutrophil recovery 8%); 5-year survival was 12%. No benefits were observed in either dose escalation randomization, or from a fourth course of treatment. There was a trend for inferior response in the PSC-833 arm due to deaths in induction. Multivariable analysis identified cytogenetics, presenting white blood count, age and secondary disease as the main predictors of outcome. Although patients with high Pgp expression and function had worse response and survival, this was not an independent prognostic factor, and was not modified by PSC-833. In conclusion, these four interventions have not improved outcomes in older patients. New agents need to be explored and novel trial designs are required to maximise prospects of achieving timely progress.
Resumo:
Juvenile idiopathic arthritis reflects a group of clinically heterogeneous arthritides hallmarked by elevated concentrations of circulating immune complexes. In this study, the circulating immune complex proteome was examined to elucidate disease-associated proteins that are overexpressed in patients with an aggressive, and at times destructive, disease phenotype. To solve this proteome, circulating immune complexes were isolated from the sera of patients with chronic, erosive or early-onset, aggressive disease and from patients in medical remission or healthy controls subsequent to protein separation by 2-DE. Thirty-seven protein spots were overexpressed in the circulating immune complexes of the aggressive disease groups as compared to controls, 28 of which have been confidently identified to date. Proteolytic fragments of glyceraldehyde-3-phosphate dehydrogenase, serotransferrin, and a-1-antitrypsin have been identified among others. In total, these 28 putative disease-associated proteins most definitely contribute to immune complex formation and likely have a significant role in disease etiology and pathogenesis. Moreover, these proteins represent markers of aggressive disease, which could aid in diagnosis and management strategies, and potential therapeutic targets to prevent or control disease outcome. This is the first in-depth analysis of the circulating immune complex proteome in juvenile idiopathic arthritis.
Resumo:
Accurate estimates of the time-to-contact (TTC) of approaching objects are crucial for survival. We used an ecologically valid driving simulation to compare and contrast the neural substrates of egocentric (head-on approach) and allocentric (lateral approach) TTC tasks in a fully factorial, event-related fMRI design. Compared to colour control tasks, both egocentric and allocentric TTC tasks activated left ventral premotor cortex/frontal operculum and inferior parietal cortex, the same areas that have previously been implicated in temporal attentional orienting. Despite differences in visual and cognitive demands, both TTC and temporal orienting paradigms encourage the use of temporally predictive information to guide behaviour, suggesting these areas may form a core network for temporal prediction. We also demonstrated that the temporal derivative of the perceptual index tau (tau-dot) held predictive value for making collision judgements and varied inversely with activity in primary visual cortex (V1). Specifically, V1 activity increased with the increasing likelihood of reporting a collision, suggesting top-down attentional modulation of early visual processing areas as a function of subjective collision. Finally, egocentric viewpoints provoked a response bias for reporting collisions, rather than no-collisions, reflecting increased caution for head-on approaches. Associated increases in SMA activity suggest motor preparation mechanisms were engaged, despite the perceptual nature of the task.
Resumo:
We introduce a protocol for steady-state entanglement generation and protection based on detuning modulation in the dissipative interaction between a two-qubit system and a bosonic mode. The protocol is a global-addressing scheme which only requires control over the system as a whole. We describe a postselection procedure to project the register state onto a subspace of maximally entangled states. We also outline how our proposal can be implemented in a circuit-quantum electrodynamics setup.
Resumo:
The generation of an entangled coherent state is one of the most important ingredients of quantum information processing using coherent states. Recently, numerous schemes to achieve this task have been proposed. In order to generate travelling-wave entangled coherent states, cross-phase-modulation, optimized by optical Kerr effect enhancement in a dense medium in an electromagnetically induced transparency (EIT) regime, seems to be very promising. In this scenario, we propose a fully quantized model of a double-EIT scheme recently proposed [D. Petrosyan and G. Kurizki, Phys. Rev. A 65, 33 833 (2002)]: the quantization step is performed adopting a fully Hamiltonian approach. This allows us to write effective equations of motion for two interacting quantum fields of light that show how the dynamics of one field depends on the photon-number operator of the other. The preparation of a Schrodinger cat state, which is a superposition of two distinct coherent states, is briefly exposed. This is based on nonlinear interaction via double EIT of two light fields (initially prepared in coherent states) and on a detection step performed using a 50:50 beam splitter and two photodetectors. In order to show the entanglement of an entangled coherent state, we suggest to measure the joint quadrature variance of the field. We show that the entangled coherent states satisfy the sufficient condition for entanglement based on quadrature variance measurement. We also show how robust our scheme is against a low detection efficiency of homodyne detectors.
Resumo:
PURPOSE
To investigate changes in gene expression during aging of the retina in the mouse.
METHODS
Total RNA was extracted from the neuroretina of young (3-month-old) and old (20-month-old) mice and processed for microarray analysis. Age-related, differentially expressed genes were assessed by the empiric Bayes shrinkagemoderated t-statistics method. Statistical significance was based on dual criteria of a ratio of change in gene expression >2 and a P < 0.01. Differential expression in 11 selected genes was further verified by real-time PCR. Functional pathways involved in retinal ageing were analyzed by an online software package (DAVID-2008) in differentially expressed gene lists. Age-related changes in differential expression in the identified retinal molecular pathways were further confirmed by immunohistochemical staining of retinal flat mounts and retinal cryosections.
RESULTS
With ageing of the retina, 298 genes were upregulated and 137 genes were downregulated. Functional annotation showed that genes linked to immune responses (Ir genes) and to tissue stress/injury responses (TS/I genes) were most likely to be modified by ageing. The Ir genes affected included those regulating leukocyte activation, chemotaxis, endocytosis, complement activation, phagocytosis, and myeloid cell differentiation, most of which were upregulated, with only a few downregulated. Increased microglial and complement activation in the aging retina was further confirmed by confocal microscopy of retinal tissues. The most strongly upregulated gene was the calcitonin receptor (Calcr; >40-fold in old versus young mice).
CONCLUSIONS
The results suggest that retinal ageing is accompanied by activation of gene sets, which are involved in local inflammatory responses. A modified form of low-grade chronic inflammation (para-inflammation) characterizes these aging changes and involves mainly the innate immune system. The marked upregulation of Calcr in ageing mice most likely reflects this chronic inflammatory/stress response, since calcitonin is a known systemic biomarker of inflammation/sepsis. © Association for Research in Vision and Ophthalmology.