998 resultados para near-rectangular slot


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultraviolet-visible spectroscopy readily discerns the two types of melanin pigments (eumelanin and pheomelanin), although fundamental details regarding the optical properties and pigment heterogeneity are more difficult to disentangle via analysis of the broad featureless absorption spectrum alone. We employed nonlinear transient absorption spectroscopy to study different melanin pigments at near-infrared wavelengths. Excited-state absorption, ground-state depletion, and stimulated emission signal contributions were distinguished for natural and synthetic eumelanins and pheomelanins. A starker contrast among the pigments is observed in the nonlinear excitation regime because they all exhibit distinct transient absorptive amplitudes, phase shifts, and nonexponential population dynamics spanning the femtosecond-nanosecond range. In this manner, different pigments within the pheomelanin subclass were distinguished in synthetic and human hair samples. These results highlight the potential of nonlinear spectroscopies to deliver an in situ analysis of natural melanins in tissue that are otherwise difficult to extract and purify.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tissue engineering of various musculoskeletal or cardiovascular tissues requires scaffolds with controllable mechanical anisotropy. However, native tissues also exhibit significant inhomogeneity in their mechanical properties, and the principal axes of anisotropy may vary with site or depth from the tissue surface. Thus, techniques to produce multilayered biomaterial scaffolds with controllable anisotropy may provide improved biomimetic properties for functional tissue replacements. In this study, poly(ε-caprolactone) scaffolds were electrospun onto a collecting electrode that was partially covered by rectangular or square shaped insulating masks. The use of a rectangular mask resulted in aligned scaffolds that were significantly stiffer in tension in the axial direction than the transverse direction at 0 strain (22.9 ± 1.3 MPa axial, 16.1 ± 0.9 MPa transverse), and at 0.1 strain (4.8 ± 0.3 MPa axial, 3.5 ± 0.2 MPa transverse). The unaligned scaffolds, produced using a square mask, did not show this anisotropy, with similar stiffness in the axial and transverse directions at 0 strain (19.7 ± 1.4 MPa axial, 20.8 ± 1.3 MPa transverse) and 0.1 strain (4.4 ± 0.2 MPa axial, 4.6 ± 0.3 MPa, transverse). Aligned scaffolds also induced alignment of adipose stem cells near the expected axis on aligned scaffolds (0.015 ± 0.056 rad), while on the unaligned scaffolds, their orientation showed more variation and was not along the expected axis (1.005 ± 0.225 rad). This method provides a novel means of creating multilayered electrospun scaffolds with controlled anisotropy for each layer, potentially providing a means to mimic the complex mechanical properties of various native tissues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a precise theoretical explanation and prediction of certain resonant peaks and dips in the electromagnetic transmission coefficient of periodically structured slabs in the presence of nonrobust guided slab modes. We also derive the leading asymptotic behavior of the related phenomenon of resonant enhancement near the guided mode. The theory applies to structures in which losses are negligible and to very general geometries of the unit cell. It is based on boundary-integral representations of the electromagnetic fields. These depend on the frequency and on the Bloch wave vector and provide a complex-analytic connection in these parameters between generalized scattering states and guided slab modes. The perturbation of three coincident zeros-those of the dispersion relation for slab modes, the reflection constant, and the transmission constant-is central to calculating transmission anomalies both for lossless dielectric materials and for perfect metals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Factors influencing apoptosis of vertebrate eggs and early embryos have been studied in cell-free systems and in intact embryos by analyzing individual apoptotic regulators or caspase activation in static samples. A novel method for monitoring caspase activity in living Xenopus oocytes and early embryos is described here. The approach, using microinjection of a near-infrared caspase substrate that emits fluorescence only after its proteolytic cleavage by active effector caspases, has enabled the elucidation of otherwise cryptic aspects of apoptotic regulation. In particular, we show that brief caspase activity (10 min) is sufficient to cause apoptotic death in this system. We illustrate a cytochrome c dose threshold in the oocyte, which is lowered by Smac, a protein that binds thereby neutralizing the inhibitor of apoptosis proteins. We show that meiotic oocytes develop resistance to cytochrome c, and that the eventual death of oocytes arrested in meiosis is caspase-independent. Finally, data acquired through imaging caspase activity in the Xenopus embryo suggest that apoptosis in very early development is not cell-autonomous. These studies both validate this assay as a useful tool for apoptosis research and reveal subtleties in the cell death program during early development. Moreover, this method offers a potentially valuable screening modality for identifying novel apoptotic regulators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have explored isotropically jammed states of semi-2D granular materials through cyclic compression. In each compression cycle, systems of either identical ellipses or bidisperse disks transition between jammed and unjammed states. We determine the evolution of the average pressure P and structure through consecutive jammed states. We observe a transition point ϕ_{m} above which P persists over many cycles; below ϕ_{m}, P relaxes slowly. The relaxation time scale associated with P increases with packing fraction, while the relaxation time scale for collective particle motion remains constant. The collective motion of the ellipses is hindered compared to disks because of the rotational constraints on elliptical particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

info:eu-repo/semantics/published

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Collection :Europto series, 6

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a comparison of fire field model predictions with experiment for the case of a fire within a compartment which is vented (buoyancydriven) to the outside by a single horizontal ceiling vent. Unlike previous work, the mathematical model does not employ a mixing ratio to represent vent temperatures but allows the model to predict vent temperatures a priori. The experiment suggests that the flow through the vent produces oscillatory behaviour in vent temperatures with puffs of smoke emerging from the fire compartment. This type of flow is also predicted by the fire field model. While the numerical predictions are in good qualitative agreement with observations, they overpredict the amplitudes of the temperature oscillations within the vent and also the compartment temperatures. The discrepancies are thought to be due to three-dimensional effects not accounted for in this model as well as using standard ‘practices’ normally used by the community with regards to discretization and turbulence models. Furthermore, it is important to note that the use of the k–ε turbulence model in a transient mode, as is used here, may have a significant effect on the results. The numerical results also suggest that a linear relationship exists between the frequency of vent temperature oscillation (n) and the heat release rate (Q0) of the type n∝Q0.290, similar to that observed for compartments with two horizontal vents. This relationship is predicted to occur only for heat release rates below a critical value. Furthermore, the vent discharge coefficient is found to vary in an oscillatory fashion with a mean value of 0.58. Below the critical heat release rate the mean discharge coefficient is found to be insensitive to fire size.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work is concerned with the development of a numerical scheme capable of producing accurate simulations of sound propagation in the presence of a mean flow field. The method is based on the concept of variable decomposition, which leads to two separate sets of equations. These equations are the linearised Euler equations and the Reynolds-averaged Navier–Stokes equations. This paper concentrates on the development of numerical schemes for the linearised Euler equations that leads to a computational aeroacoustics (CAA) code. The resulting CAA code is a non-diffusive, time- and space-staggered finite volume code for the acoustic perturbation, and it is validated against analytic results for pure 1D sound propagation and 2D benchmark problems involving sound scattering from a cylindrical obstacle. Predictions are also given for the case of prescribed source sound propagation in a laminar boundary layer as an illustration of the effects of mean convection. Copyright © 1999 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An MHD flow is considered which is relevant to horizontal Bridgman technique for crystal growth from a melt. In the unidirectional parallel flow approximation an analytical solution is found accounting for the finite rectangular cross section of the channel in the case of a vertical magnetic field. Numerical pseudo-spectral solutions are used in the cases of arbitrary magnetic field and gravity vector orientations. The vertical magnetic field (parallel to the gravity) is found to be he most effective to damp the flow, however, complicated flow profiles with "overvelocities" in the comers are typical in the case of a finite cross-section channel. The temperature distribution is shown to be dependent on the flow profile. The linear stability of the flow is investigated by use of the Chebyshev pseudospectral method. For the case of an infinite width channel the transversal rolls instability is investigated, and for the finite cross-section channel the longitudinal rolls instability is considered. The critical Gr number values are computed in the dependence of the Ha number and the wave number or the aspect ratio in the case of finite section.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a numerical study of the Reynolds number and scaling effects in microchannel flows. The configuration includes a rectangular, high-aspect ratio microchannel with heat sinks, similar to an experimental setup. Water at ambient temperature is used as a coolant fluid and the source of heating is introduced via electronic cartridges in the solids. Two channel heights, measuring 0.3 mm and 1 mm are considered at first. The Reynolds number varies in a range of 500-2200, based on the hydraulic diameter. Simulations are focused on the Reynolds number and channel height effects on the Nusselt number. It is found that the Reynolds number has noticeable influences on the local Nusselt number distributions, which are in agreement with other studies. The numerical predictions of the dimensionless temperature of the fluid agree fairly well with experimental measurements; however the dimensionless temperature of the solid does exhibit a significant discrepancy near the channel exit, similar to those reported by other researchers. The present study demonstrates that there is a significant scaling effect at small channel height, typically 0.3 mm, in agreement with experimental observations. This scaling effect has been confirmed by three additional simulations being carried out at channel heights of 0.24 mm, 0.14 mm and 0.1 mm, respectively. A correlation between the channel height and the normalized Nusselt number is thus proposed, which agrees well with results presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerical simulation of heat transfer in a high aspect ratio rectangular microchannel with heat sinks has been conducted, similar to an experimental study. Three channel heights measuring 0.3 mm, 0.6mmand 1mmare considered and the Reynolds number varies from 300 to 2360, based on the hydraulic diameter. Simulation starts with the validation study on the Nusselt number and the Poiseuille number variations along the channel streamwise direction. It is found that the predicted Nusselt number has shown very good agreement with the theoretical estimation, but some discrepancies are noted in the Poiseuille number comparison. This observation however is in consistent with conclusions made by other researchers for the same flow problem. Simulation continues on the evaluation of heat transfer characteristics, namely the friction factor and the thermal resistance. It is found that noticeable scaling effect happens at small channel height of 0.3 mm and the predicted friction factor agrees fairly well with an experimental based correlation. Present simulation further reveals that the thermal resistance is low at small channel height, indicating that the heat transfer performance can be enhanced with the decrease of the channel height.