981 resultados para multiple quantum well
Resumo:
A novel phase-type quantum-dot-array diffraction grating (QDADG) is reported. In contrast to an earlier amplitude-type QDADG [C. Wang , Rev. Sci. Instrum. 78, 053503 (2007)], the new phase-type QDADG would remove the zeroth order diffraction at some certain wavelength, as well as suppressing the higher-order diffractions. In this paper, the basic concept, the fabrication, the calibration techniques, and the calibration results are presented. Such a grating can be applied in the research fields of beam splitting, laser probe diagnostics, and so on.
Resumo:
The spatiotemporal evolutions of ultrashort pulses in two dimensions are investigated numerically by solving the coupled Maxwell-Bloch equations without invoking the slowly varying envelope approximation and rotating-wave approximation. For an on-axis 2n pi sech pulse, local delay makes the temporal split 2 pi sech pulses crescent-shaped in the transverse distribution. Due to the transverse effect, the temporal split 2 pi sech pulses become unstable and experience reshaping during the propagation process. Then, interference occurs between the successive crescent-shaped pulses and multiple self-focusing can form.
Resumo:
We theoretically show that selection of a single quantum path in high-order harmonics generation can be realized in a few-optical-cycle regime with two-color schemes. We also demonstrate, in theory as well, the generation of spectrally smooth and ultrabroad extreme ultraviolet supercontinuum in argon gas which can produce single similar to 79 as pulses with currently available ultrafast laser sources. Our finding can be beneficial for generating isolated sub-100 as extreme ultraviolet pulses.
Resumo:
Accurate simulation of quantum dynamics in complex systems poses a fundamental theoretical challenge with immediate application to problems in biological catalysis, charge transfer, and solar energy conversion. The varied length- and timescales that characterize these kinds of processes necessitate development of novel simulation methodology that can both accurately evolve the coupled quantum and classical degrees of freedom and also be easily applicable to large, complex systems. In the following dissertation, the problems of quantum dynamics in complex systems are explored through direct simulation using path-integral methods as well as application of state-of-the-art analytical rate theories.
Resumo:
This work reports investigations upon weakly superconducting proximity effect bridges. These bridges, which exhibit the Josephson effects, are produced by bisecting a superconductor with a short (<1µ) region of material whose superconducting transition temperature is below that of the adjacent superconductors. These bridges are fabricated from layered refractory metal thin films whose transition temperature will depend upon the thickness ratio of the materials involved. The thickness ratio is changed in the area of the bridge to lower its transition temperature. This is done through novel photolithographic techniques described in the text, Chapter 2.
If two such proximity effect bridges are connected in parallel, they form a quantum interferometer. The maximum zero voltage current through this circuit is periodically modulated by the magnetic flux through the circuit. At a constant bias current, the modulation of the critical current produces a modulation in the dc voltage across the bridge. This change in dc voltage has been found to be the result of a change in the internal dissipation in the device. A simple model using lumped circuit theory and treating the bridges as quantum oscillators of frequency ω = 2eV/h, where V is the time average voltage across the device, has been found to adequately describe the observed voltage modulation.
The quantum interferometers have been converted to a galvanometer through the inclusion of an integral thin film current path which couples magnetic flux through the interferometer. Thus a change in signal current produces a change in the voltage across the interferometer at a constant bias current. This work is described in Chapter 3 of the text.
The sensitivity of any device incorporating proximity effect bridges will ultimately be determined by the fluctuations in their electrical parameters. He have measured the spectral power density of the voltage fluctuations in proximity effect bridges using a room temperature electronics and a liquid helium temperature transformer to match the very low (~ 0.1 Ω) impedances characteristic of these devices.
We find the voltage noise to agree quite well with that predicted by phonon noise in the normal conduction through the bridge plus a contribution from the superconducting pair current through the bridge which is proportional to the ratios of this current to the time average voltage across the bridge. The total voltage fluctuations are given by <V^2(f ) > = 4kTR^2_d I/V where R_d is the dynamic resistance, I the total current, and V the voltage across the bridge . An additional noise source appears with a strong 1/f^(n) dependence , 1.5 < n < 2, if the bridges are fabricated upon a glass substrate. This excess noise, attributed to thermodynamic temperature fluctuations in the volume of the bridge, increases dramatically on a glass substrate due to the greatly diminished thermal diffusivity of the glass as compared to sapphire.
Resumo:
There is a growing interest in taking advantage of possible patterns and structures in data so as to extract the desired information and overcome the curse of dimensionality. In a wide range of applications, including computer vision, machine learning, medical imaging, and social networks, the signal that gives rise to the observations can be modeled to be approximately sparse and exploiting this fact can be very beneficial. This has led to an immense interest in the problem of efficiently reconstructing a sparse signal from limited linear observations. More recently, low-rank approximation techniques have become prominent tools to approach problems arising in machine learning, system identification and quantum tomography.
In sparse and low-rank estimation problems, the challenge is the inherent intractability of the objective function, and one needs efficient methods to capture the low-dimensionality of these models. Convex optimization is often a promising tool to attack such problems. An intractable problem with a combinatorial objective can often be "relaxed" to obtain a tractable but almost as powerful convex optimization problem. This dissertation studies convex optimization techniques that can take advantage of low-dimensional representations of the underlying high-dimensional data. We provide provable guarantees that ensure that the proposed algorithms will succeed under reasonable conditions, and answer questions of the following flavor:
- For a given number of measurements, can we reliably estimate the true signal?
- If so, how good is the reconstruction as a function of the model parameters?
More specifically, i) Focusing on linear inverse problems, we generalize the classical error bounds known for the least-squares technique to the lasso formulation, which incorporates the signal model. ii) We show that intuitive convex approaches do not perform as well as expected when it comes to signals that have multiple low-dimensional structures simultaneously. iii) Finally, we propose convex relaxations for the graph clustering problem and give sharp performance guarantees for a family of graphs arising from the so-called stochastic block model. We pay particular attention to the following aspects. For i) and ii), we aim to provide a general geometric framework, in which the results on sparse and low-rank estimation can be obtained as special cases. For i) and iii), we investigate the precise performance characterization, which yields the right constants in our bounds and the true dependence between the problem parameters.
Resumo:
Researchers have spent decades refining and improving their methods for fabricating smaller, finer-tuned, higher-quality nanoscale optical elements with the goal of making more sensitive and accurate measurements of the world around them using optics. Quantum optics has been a well-established tool of choice in making these increasingly sensitive measurements which have repeatedly pushed the limits on the accuracy of measurement set forth by quantum mechanics. A recent development in quantum optics has been a creative integration of robust, high-quality, and well-established macroscopic experimental systems with highly-engineerable on-chip nanoscale oscillators fabricated in cleanrooms. However, merging large systems with nanoscale oscillators often require them to have extremely high aspect-ratios, which make them extremely delicate and difficult to fabricate with an "experimentally reasonable" repeatability, yield and high quality. In this work we give an overview of our research, which focused on microscopic oscillators which are coupled with macroscopic optical cavities towards the goal of cooling them to their motional ground state in room temperature environments. The quality factor of a mechanical resonator is an important figure of merit for various sensing applications and observing quantum behavior. We demonstrated a technique for pushing the quality factor of a micromechanical resonator beyond conventional material and fabrication limits by using an optical field to stiffen and trap a particular motional mode of a nanoscale oscillator. Optical forces increase the oscillation frequency by storing most of the mechanical energy in a nearly loss-less optical potential, thereby strongly diluting the effects of material dissipation. By placing a 130 nm thick SiO2 pendulum in an optical standing wave, we achieve an increase in the pendulum center-of-mass frequency from 6.2 to 145 kHz. The corresponding quality factor increases 50-fold from its intrinsic value to a final value of Qm = 5.8(1.1) x 105, representing more than an order of magnitude improvement over the conventional limits of SiO2 for a pendulum geometry. Our technique may enable new opportunities for mechanical sensing and facilitate observations of quantum behavior in this class of mechanical systems. We then give a detailed overview of the techniques used to produce high-aspect-ratio nanostructures with applications in a wide range of quantum optics experiments. The ability to fabricate such nanodevices with high precision opens the door to a vast array of experiments which integrate macroscopic optical setups with lithographically engineered nanodevices. Coupled with atom-trapping experiments in the Kimble Lab, we use these techniques to realize a new waveguide chip designed to address ultra-cold atoms along lithographically patterned nanobeams which have large atom-photon coupling and near 4π Steradian optical access for cooling and trapping atoms. We describe a fully integrated and scalable design where cold atoms are spatially overlapped with the nanostring cavities in order to observe a resonant optical depth of d0 ≈ 0.15. The nanodevice illuminates new possibilities for integrating atoms into photonic circuits and engineering quantum states of atoms and light on a microscopic scale. We then describe our work with superconducting microwave resonators coupled to a phononic cavity towards the goal of building an integrated device for quantum-limited microwave-to-optical wavelength conversion. We give an overview of our characterizations of several types of substrates for fabricating a low-loss high-frequency electromechanical system. We describe our electromechanical system fabricated on a Si3N4 membrane which consists of a 12 GHz superconducting LC resonator coupled capacitively to the high frequency localized modes of a phononic nanobeam. Using our suspended membrane geometry we isolate our system from substrates with significant loss tangents, drastically reducing the parasitic capacitance of our superconducting circuit to ≈ 2.5$ fF. This opens up a number of possibilities in making a new class of low-loss high-frequency electromechanics with relatively large electromechanical coupling. We present our substrate studies, fabrication methods, and device characterization.
Resumo:
Non-classical properties and quantum interference (QI) in two-photon excitation of a three level atom (|1〉), |2〉, |3〉) in a ladder configuration, illuminated by multiple fields in non-classical (squeezed) and/or classical (coherent) states, is studied. Fundamentally new effects associated with quantum correlations in the squeezed fields and QI due to multiple excitation pathways have been observed. Theoretical studies and extrapolations of these findings have revealed possible applications which are far beyond any current capabilities, including ultrafast nonlinear mixing, ultrafast homodyne detection and frequency metrology. The atom used throughout the experiments was Cesium, which was magneto-optically trapped in a vapor cell to produce a Doppler-free sample. For the first part of the work the |1〉 → |2〉 → |3〉 transition (corresponding to the 6S1/2F = 4 → 6P3/2F' = 5 → 6D5/2F" = 6 transition) was excited by using the quantum-correlated signal (Ɛs) and idler (Ɛi) output fields of a subthreshold non-degenerate optical parametric oscillator, which was tuned so that the signal and idler fields were resonant with the |1〉 → |2〉 and |2〉 → |3〉 transitions, respectively. In contrast to excitation with classical fields for which the excitation rate as a function of intensity has always an exponent greater than or equal to two, excitation with squeezed-fields has been theoretically predicted to have an exponent that approaches unity for small enough intensities. This was verified experimentally by probing the exponent down to a slope of 1.3, demonstrating for the first time a purely non-classical effect associated with the interaction of squeezed fields and atoms. In the second part excitation of the two-photon transition by three phase coherent fields Ɛ1 , Ɛ2 and Ɛ0, resonant with the dipole |1〉 → |2〉 and |2〉 → |3〉 and quadrupole |1〉 → |3〉 transitions, respectively, is studied. QI in the excited state population is observed due to two alternative excitation pathways. This is equivalent to nonlinear mixing of the three excitation fields by the atom. Realizing that in the experiment the three fields are spaced in frequency over a range of 25 THz, and extending this scheme to other energy triplets and atoms, leads to the discovery that ranges up to 100's of THz can be bridged in a single mixing step. Motivated by these results, a master equation model has been developed for the system and its properties have been extensively studied.
Resumo:
Much of the chemistry that affects life on planet Earth occurs in the condensed phase. The TeraHertz (THz) or far-infrared (far-IR) region of the electromagnetic spectrum (from 0.1 THz to 10 THz, 3 cm-1 to 300 cm-1, or 3000 μm to 30 μm) has been shown to provide unique possibilities in the study of condensed-phase processes. The goal of this work is to expand the possibilities available in the THz region and undertake new investigations of fundamental interest to chemistry. Since we are fundamentally interested in condensed-phase processes, this thesis focuses on two areas where THz spectroscopy can provide new understanding: astrochemistry and solvation science. To advance these fields, we had to develop new instrumentation that would enable the experiments necessary to answer new questions in either astrochemistry or solvation science. We first developed a new experimental setup capable of studying astrochemical ice analogs in both the TeraHertz (THz), or far-Infrared (far-IR), region (0.3 - 7.5 THz; 10 - 250 cm-1) and the mid-IR (400 - 4000 cm-1). The importance of astrochemical ices lies in their key role in the formation of complex organic molecules, such as amino acids and sugars in space. Thus, the instruments are capable of performing variety of spectroscopic studies that can provide especially relevant laboratory data to support astronomical observations from telescopes such as the Herschel Space Telescope, the Stratospheric Observatory for Infrared Astronomy (SOFIA), and the Atacama Large Millimeter Array (ALMA). The experimental apparatus uses a THz time-domain spectrometer, with a 1750/875 nm plasma source and a GaP detector crystal, to cover the bandwidth mentioned above with ~10 GHz (~0.3 cm-1) resolution.
Using the above instrumentation, experimental spectra of astrochemical ice analogs of water and carbon dioxide in pure, mixed, and layered ices were collected at different temperatures under high vacuum conditions with the goal of investigating the structure of the ice. We tentatively observe a new feature in both amorphous solid water and crystalline water at 33 cm-1 (1 THz). In addition, our studies of mixed and layered ices show how it is possible to identify the location of carbon dioxide as it segregates within the ice by observing its effect on the THz spectrum of water ice. The THz spectra of mixed and layered ices are further analyzed by fitting their spectra features to those of pure amorphous solid water and crystalline water ice to quantify the effects of temperature changes on structure. From the results of this work, it appears that THz spectroscopy is potentially well suited to study thermal transformations within the ice.
To advance the study of liquids with THz spectroscopy, we developed a new ultrafast nonlinear THz spectroscopic technique: heterodyne-detected, ultrafast THz Kerr effect (TKE) spectroscopy. We implemented a heterodyne-detection scheme into a TKE spectrometer that uses a stilbazoiumbased THz emitter, 4-N,N-dimethylamino-4-N-methyl-stilbazolium 2,4,6-trimethylbenzenesulfonate (DSTMS), and high numerical aperture optics which generates THz electric field in excess of 300 kV/cm, in the sample. This allows us to report the first measurement of quantum beats at terahertz (THz) frequencies that result from vibrational coherences initiated by the nonlinear, dipolar interaction of a broadband, high-energy, (sub)picosecond THz pulse with the sample. Our instrument improves on both the frequency coverage, and sensitivity previously reported; it also ensures a backgroundless measurement of the THz Kerr effect in pure liquids. For liquid diiodomethane, we observe a quantum beat at 3.66 THz (122 cm-1), in exact agreement with the fundamental transition frequency of the υ4 vibration of the molecule. This result provides new insight into dipolar vs. Raman selection rules at terahertz frequencies.
To conclude we discuss future directions for the nonlinear THz spectroscopy in the Blake lab. We report the first results from an experiment using a plasma-based THz source for nonlinear spectroscopy that has the potential to enable nonlinear THz spectra with a sub-100 fs temporal resolution, and how the optics involved in the plasma mechanism can enable THz pulse shaping. Finally, we discuss how a single-shot THz detection scheme could improve the acquisition of THz data and how such a scheme could be implemented in the Blake lab. The instruments developed herein will hopefully remain a part of the groups core competencies and serve as building blocks for the next generation of THz instrumentation that pushes the frontiers of both chemistry and the scientific enterprise as a whole.
Resumo:
This thesis puts forth a theory-directed approach coupled with spectroscopy aimed at the discovery and understanding of light-matter interactions in semiconductors and metals.
The first part of the thesis presents the discovery and development of Zn-IV nitride materials.The commercial prominence in the optoelectronics industry of tunable semiconductor alloy materials based on nitride semiconductor devices, specifically InGaN, motivates the search for earth-abundant alternatives for use in efficient, high-quality optoelectronic devices. II-IV-N2 compounds, which are closely related to the wurtzite-structured III-N semiconductors, have similar electronic and optical properties to InGaN namely direct band gaps, high quantum efficiencies and large optical absorption coefficients. The choice of different group II and group IV elements provides chemical diversity that can be exploited to tune the structural and electronic properties through the series of alloys. The first theoretical and experimental investigation of the ZnSnxGe1−xN2 series as a replacement for III-nitrides is discussed here.
The second half of the thesis shows ab−initio calculations for surface plasmons and plasmonic hot carrier dynamics. Surface plasmons, electromagnetic modes confined to the surface of a conductor-dielectric interface, have sparked renewed interest because of their quantum nature and their broad range of applications. The decay of surface plasmons is usually a detriment in the field of plasmonics, but the possibility to capture the energy normally lost to heat would open new opportunities in photon sensors, energy conversion devices and switching. A theoretical understanding of plasmon-driven hot carrier generation and relaxation dynamics in the ultrafast regime is presented here. Additionally calculations for plasmon-mediated upconversion as well as an energy-dependent transport model for these non-equilibrium carriers are shown.
Finally, this thesis gives an outlook on the potential of non-equilibrium phenomena in metals and semiconductors for future light-based technologies.
Resumo:
Part I
Solutions of Schrödinger’s equation for system of two particles bound in various stationary one-dimensional potential wells and repelling each other with a Coulomb force are obtained by the method of finite differences. The general properties of such systems are worked out in detail for the case of two electrons in an infinite square well. For small well widths (1-10 a.u.) the energy levels lie above those of the noninteresting particle model by as much as a factor of 4, although excitation energies are only half again as great. The analytical form of the solutions is obtained and it is shown that every eigenstate is doubly degenerate due to the “pathological” nature of the one-dimensional Coulomb potential. This degeneracy is verified numerically by the finite-difference method. The properties of the square-well system are compared with those of the free-electron and hard-sphere models; perturbation and variational treatments are also carried out using the hard-sphere Hamiltonian as a zeroth-order approximation. The lowest several finite-difference eigenvalues converge from below with decreasing mesh size to energies below those of the “best” linear variational function consisting of hard-sphere eigenfunctions. The finite-difference solutions in general yield expectation values and matrix elements as accurate as those obtained using the “best” variational function.
The system of two electrons in a parabolic well is also treated by finite differences. In this system it is possible to separate the center-of-mass motion and hence to effect a considerable numerical simplification. It is shown that the pathological one-dimensional Coulomb potential gives rise to doubly degenerate eigenstates for the parabolic well in exactly the same manner as for the infinite square well.
Part II
A general method of treating inelastic collisions quantum mechanically is developed and applied to several one-dimensional models. The formalism is first developed for nonreactive “vibrational” excitations of a bound system by an incident free particle. It is then extended to treat simple exchange reactions of the form A + BC →AB + C. The method consists essentially of finding a set of linearly independent solutions of the Schrödinger equation such that each solution of the set satisfies a distinct, yet arbitrary boundary condition specified in the asymptotic region. These linearly independent solutions are then combined to form a total scattering wavefunction having the correct asymptotic form. The method of finite differences is used to determine the linearly independent functions.
The theory is applied to the impulsive collision of a free particle with a particle bound in (1) an infinite square well and (2) a parabolic well. Calculated transition probabilities agree well with previously obtained values.
Several models for the exchange reaction involving three identical particles are also treated: (1) infinite-square-well potential surface, in which all three particles interact as hard spheres and each two-particle subsystem (i.e. BC and AB) is bound by an attractive infinite-square-well potential; (2) truncated parabolic potential surface, in which the two-particle subsystems are bound by a harmonic oscillator potential which becomes infinite for interparticle separations greater than a certain value; (3) parabolic (untruncated) surface. Although there are no published values with which to compare our reaction probabilities, several independent checks on internal consistency indicate that the results are reliable.
Resumo:
Specklegram in multimode fiber has successfully been used as a sensor for detecting mechanical disturbance. Speckles in a multimode pure silica grapefruit fiber are observed and compared to that of a step-index multimode fiber, showing different features between them. The sensitivities to external disturbance of two kinds of fiber were measured, based on single-multiple-single mode (SMS) fiber structure. Experimental results show that the grapefruit fiber shows higher sensitivity than does the step-index multimode fiber. The transmission spectrum of the grapefruit fiber was measured as well, showing some oscillation features that are significantly different from that of a step-index multimode fiber. The experiments may provide suggestions to understand the mechanisms of light propagation in grapefruit fibers. (D 2008 Optical Society of America.
Resumo:
Structural design is a decision-making process in which a wide spectrum of requirements, expectations, and concerns needs to be properly addressed. Engineering design criteria are considered together with societal and client preferences, and most of these design objectives are affected by the uncertainties surrounding a design. Therefore, realistic design frameworks must be able to handle multiple performance objectives and incorporate uncertainties from numerous sources into the process.
In this study, a multi-criteria based design framework for structural design under seismic risk is explored. The emphasis is on reliability-based performance objectives and their interaction with economic objectives. The framework has analysis, evaluation, and revision stages. In the probabilistic response analysis, seismic loading uncertainties as well as modeling uncertainties are incorporated. For evaluation, two approaches are suggested: one based on preference aggregation and the other based on socio-economics. Both implementations of the general framework are illustrated with simple but informative design examples to explore the basic features of the framework.
The first approach uses concepts similar to those found in multi-criteria decision theory, and directly combines reliability-based objectives with others. This approach is implemented in a single-stage design procedure. In the socio-economics based approach, a two-stage design procedure is recommended in which societal preferences are treated through reliability-based engineering performance measures, but emphasis is also given to economic objectives because these are especially important to the structural designer's client. A rational net asset value formulation including losses from uncertain future earthquakes is used to assess the economic performance of a design. A recently developed assembly-based vulnerability analysis is incorporated into the loss estimation.
The presented performance-based design framework allows investigation of various design issues and their impact on a structural design. It is a flexible one that readily allows incorporation of new methods and concepts in seismic hazard specification, structural analysis, and loss estimation.
Resumo:
79 p.
Resumo:
A diffraction mechanism is proposed for the capture, multiple bouncing and final escape of a fast ion (keV) impinging on the surface of a polarizable material at grazing incidence. Capture and escape are effected by elastic quantum diffraction consisting of the exchange of a parallel surface wave vector G= 2p/ a between the ion parallel momentum and the surface periodic potential of period a. Diffraction- assisted capture becomes possible for glancing angles F smaller than a critical value given by Fc 2- 2./ a-| Vim|/ E, where E is the kinetic energy of the ion,. = h/ Mv its de Broglie wavelength and Vim its average electronic image potential at the distance from the surface where diffraction takes place. For F< Fc, the ion can fall into a selected capture state in the quasi- continuous spectrum of its image potential and execute one or several ricochets before being released by the time reversed diffraction process. The capture, ricochet and escape are accompanied by a large, periodic energy loss of several tens of eV in the forward motion caused by the coherent emission of a giant number of quanta h. of Fuchs- Kliewer surface phonons characteristic of the polar material. An analytical calculation of the energy loss spectrum, based on the proposed diffraction process and using a model ion-phonon coupling developed earlier (Lucas et al 2013 J. Phys.: Condens. Matter 25 355009), is presented, which fully explains the experimental spectrum of Villette et al (2000 Phys. Rev. Lett. 85 3137) for Ne+ ions ricocheting on a LiF(001) surface.