963 resultados para morphological and molecular characters


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bibliography: p. vi-ix.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fish species around the world are parasitized by myxozoans of the genus Kudoa, several of which infect and cause damage of commercial importance. In particular, Kudoa thyrsites and Kudoa amamiensis infect certain cultured fish species causing damage to muscle tissue, making the fish unmarketable. Kudoa thyrsites has a broad host and geographic range infecting over 35 different fish species worldwide, while K. amamiensis has only been reported from a few species in Japanese waters. Through morphological and molecular analyses we have confirmed the presence of both of these parasites in eastern Australian waters. In addition, a novel Kudoa species was identified, having stellate spores, with one polar capsule larger than the other three. The SSU rDNA sequence of this parasite was 1.5% different from K. thyrsites and is an outlier from K. thyrsites representatives in a phylogenetic analysis. Furthermore, the spores of this parasite are distinctly smaller than those of K. thyrsites, and thus it is described as Kudoa minithyrsites n. sp. Although the potential effects of K. minithyrsites n. sp. on its fish hosts are unknown, both K. thyrsites and K. amamiensis are associated with flesh quality problems in some cultured species and may be potential threats to an expanding aquaculture industry in Australia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Flows of complex fluids need to be understood at both macroscopic and molecular scales, because it is the macroscopic response that controls the fluid behavior, but the molecular scale that ultimately gives rise to rheological and solid-state properties. Here the flow field of an entangled polymer melt through an extended contraction, typical of many polymer processes, is imaged optically and by small-angle neutron scattering. The dual-probe technique samples both the macroscopic stress field in the flow and the microscopic configuration of the polymer molecules at selected points. The results are compared with a recent tube model molecular theory of entangled melt flow that is able to calculate both the stress and the single-chain structure factor from first principles. The combined action of the three fundamental entangled processes of reptation, contour length fluctuation, and convective constraint release is essential to account quantitatively for the rich rheological behavior. The multiscale approach unearths a new feature: Orientation at the length scale of the entire chain decays considerably more slowly than at the smaller entanglement length.