918 resultados para molecular dynamics


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The total structure factor of molten TbCl3 at 617ºC was measured by using neutron diffraction. The data are in agreement with results from previous experimental work but the use of a diffractometer having an extended reciprocal-space measurement window leads to improved resolution in real space. Significant discrepancies with the results obtained from recent molecular dynamics simulations carried out using a polarizable ion model, in which the interaction potentials were optimized to enhance agreement with previous diffraction data, are thereby highlighted. It is hence shown that there is considerable scope for the development of this model for TbCl3 and for other trivalent metal halide systems spanning a wide range of ion size ratios.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel framework for modelling biomolecular systems at multiple scales in space and time simultaneously is described. The atomistic molecular dynamics representation is smoothly connected with a statistical continuum hydrodynamics description. The system behaves correctly at the limits of pure molecular dynamics (hydrodynamics) and at the intermediate regimes when the atoms move partly as atomistic particles, and at the same time follow the hydrodynamic flows. The corresponding contributions are controlled by a parameter, which is defined as an arbitrary function of space and time, thus, allowing an effective separation of the atomistic 'core' and continuum 'environment'. To fill the scale gap between the atomistic and the continuum representations our special purpose computer for molecular dynamics, MDGRAPE-4, as well as GPU-based computing were used for developing the framework. These hardware developments also include interactive molecular dynamics simulations that allow intervention of the modelling through force-feedback devices.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Multiscale systems that are characterized by a great range of spatial–temporal scales arise widely in many scientific domains. These range from the study of protein conformational dynamics to multiphase processes in, for example, granular media or haemodynamics, and from nuclear reactor physics to astrophysics. Despite the diversity in subject areas and terminology, there are many common challenges in multiscale modelling, including validation and design of tools for programming and executing multiscale simulations. This Theme Issue seeks to establish common frameworks for theoretical modelling, computing and validation, and to help practical applications to benefit from the modelling results. This Theme Issue has been inspired by discussions held during two recent workshops in 2013: ‘Multiscale modelling and simulation’ at the Lorentz Center, Leiden (http://www.lorentzcenter.nl/lc/web/2013/569/info.php3?wsid=569&venue=Snellius), and ‘Multiscale systems: linking quantum chemistry, molecular dynamics and microfluidic hydrodynamics’ at the Royal Society Kavli Centre. The objective of both meetings was to identify common approaches for dealing with multiscale problems across different applications in fluid and soft matter systems. This was achieved by bringing together experts from several diverse communities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We develop a simplified implementation of the Hoshen-Kopelman cluster counting algorithm adapted for honeycomb networks. In our implementation of the algorithm we assume that all nodes in the network are occupied and links between nodes can be intact or broken. The algorithm counts how many clusters there are in the network and determines which nodes belong to each cluster. The network information is stored into two sets of data. The first one is related to the connectivity of the nodes and the second one to the state of links. The algorithm finds all clusters in only one scan across the network and thereafter cluster relabeling operates on a vector whose size is much smaller than the size of the network. Counting the number of clusters of each size, the algorithm determines the cluster size probability distribution from which the mean cluster size parameter can be estimated. Although our implementation of the Hoshen-Kopelman algorithm works only for networks with a honeycomb (hexagonal) structure, it can be easily changed to be applied for networks with arbitrary connectivity between the nodes (triangular, square, etc.). The proposed adaptation of the Hoshen-Kopelman cluster counting algorithm is applied to studying the thermal degradation of a graphene-like honeycomb membrane by means of Molecular Dynamics simulation with a Langevin thermostat. ACM Computing Classification System (1998): F.2.2, I.5.3.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aquaporins (AQP) family of integral membrane protein channels mediate cellular water and solute flow. Although qualitative and quantitative differences in channel permeability, selectivity, subcellular localization and trafficking responses have been observed for different members of the AQP family, the signature homotetrameric quaternary structure is conserved. Using a variety of biophysical techniques, we show that mutations to an intracellular loop (loop D) of human AQP4 reduce oligomerization. Non-tetrameric AQP4 mutants are unable to relocalize to the plasma membrane in response to changes in extracellular tonicity, despite equivalent constitutive surface expression levels and water permeability to wild-type AQP4. A network of AQP4 loop D hydrogen bonding interactions, identified using molecular dynamics simulations and based on a comparative mutagenic analysis of AQPs 1, 3 and 4, suggest that loop D interactions may provide a general structural framework for tetrameric assembly within the AQP family.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A hybrid Molecular Dynamics/Fluctuating Hydrodynamics framework based on the analogy with two-phase hydrodynamics has been extended to dynamically tracking the feature of interest at all-atom resolution. In the model, the hydrodynamics description is used as an effective boundary condition to close the molecular dynamics solution without resorting to standard periodic boundary conditions. The approach is implemented in a popular Molecular Dynamics package GROMACS and results for two biomolecular systems are reported. A small peptide dialanine and a complete capsid of a virus porcine circovirus 2 in water are considered and shown to reproduce the structural and dynamic properties compared to those obtained in theory, purely atomistic simulations, and experiment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sol-gel-synthesized bioactive glasses may be formed via a hydrolysis condensation reaction, silica being introduced in the form of tetraethyl orthosilicate (TEOS), and calcium is typically added in the form of calcium nitrate. The synthesis reaction proceeds in an aqueous environment; the resultant gel is dried, before stabilization by heat treatment. These materials, being amorphous, are complex at the level of their atomic-scale structure, but their bulk properties may only be properly understood on the basis of that structural insight. Thus, a full understanding of their structure-property relationship may only be achieved through the application of a coherent suite of leading-edge experimental probes, coupled with the cogent use of advanced computer simulation methods. Using as an exemplar a calcia-silica sol-gel glass of the kind developed by Larry Hench, in the memory of whom this paper is dedicated, we illustrate the successful use of high-energy X-ray and neutron scattering (diffraction) methods, magic-angle spinning solid-state NMR, and molecular dynamics simulation as components to a powerful methodology for the study of amorphous materials.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chloroperoxidase (CPO) is a potential biocatalyst for use in asymmetric synthesis. The mechanisms of CPO catalysis are therefore of interest. The halogenation reaction, one of several chemical reactions that CPO catalyzes, is not fully understood and is the subject of this dissertation. The mechanism by which CPO catalyzes halogenation is disputed. It has been postulated that halogenation of substrates occurs at the active site. Alternatively, it has been proposed that hypochlorous acid, produced at the active site via oxidation of chloride, is released prior to reaction, so that halogenation occurs in solution. The free-solution mechanism is supported by the observation that halogenation of most substrates often occurs non-stereospecifically. On the other hand, the enzyme-bound mechanism is supported by the observation that some large substrates undergo halogenation stereospecifically. The major purpose of this research is to compare chlorination of the substrate β-cyclopentanedione in the two environments. One study was of the reaction with limited hydration because such a level of hydration is typical of the active site. For this work, a purely quantum mechanical approach was used. To model the aqueous environment, the limited hydration environment approach is not appropriate. Instead, reaction precursor conformations were obtained from a solvated molecular dynamics simulation, and reaction of potentially reactive molecular encounters was modeled with a hybrid quantum mechanical/molecular mechanical approach. Extensive work developing parameters for small molecules was pre-requisite for the molecular dynamics simulation. It is observed that a limited and optimized (active-site-like) hydration environment leads to a lower energetic barrier than the fully solvated model representative of the aqueous environment at room temperature, suggesting that the stable water network near the active site is likely to facilitate the chlorination mechanism. The influence of the solvent environment on the reaction barrier is critical. It is observed that stabilization of the catalytic water by other solvent molecules lowers the barrier for keto-enol tautomerization. Placement of water molecules is more important than the number of water molecules in such studies. The fully-solvated model demonstrates that reaction proceeds when the instantaneous dynamical water environment is close to optimal for stabilizing the transition state.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fluorescent proteins (FPs) are extremely valuable biochemical markers which have found a wide range of applications in cellular and molecular biology research. The monomeric variants of red fluorescent proteins (RFPs), known as mFruits, have been especially valuable for in vivo applications in mammalian cell imaging. Fluorescent proteins consist of a chromophore caged in the beta-barrel protein scaffold. The photophysical properties of an FP is determined by its chromophore structure and its interactions with the protein barrel. Application of hydrostatic pressure on FPs results in the modification of the chromophore environment which allows a systematic study of the role of the protein-chromophore interactions on photophysical properties of FPs. Using Molecular Dynamics (MD) computer simulations, I investigated the pressure induced structural changes in the monomeric variants mCherry, mStrawberry, and Citrine. The results explain the molecular basis for experimentally observed pressure responses among FP variants. It is found that the barrel flexibility, hydrogen bonding interactions and chromophore planarity of the FPs can be correlated to their contrasting photophysical properties at vaious pressures. I also investigated the oxygen diffusion pathways in mOrange and mOrange2 which exhibit marked differences in oxygen sensitivities as well as photostability. Such computational identifications of structural changes and oxygen diffusion pathways are important in guiding mutagenesis efforts to design fluorescent proteins with improved photophysical properties.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fluorescent proteins are valuable tools as biochemical markers for studying cellular processes. Red fluorescent proteins (RFPs) are highly desirable for in vivo applications because they absorb and emit light in the red region of the spectrum where cellular autofluorescence is low. The naturally occurring fluorescent proteins with emission peaks in this region of the spectrum occur in dimeric or tetrameric forms. The development of mutant monomeric variants of RFPs has resulted in several novel FPs known as mFruits. Though oxygen is required for maturation of the chromophore, it is known that photobleaching of FPs is oxygen sensitive, and oxygen-free conditions result in improved photostabilities. Therefore, understanding oxygen diffusion pathways in FPs is important for both photostabilites and maturation of the chromophores. We used molecular dynamics calculations to investigate the protein barrel fluctuations in mCherry, which is one of the most useful monomeric mFruit variants, and its GFP homolog citrine. We employed implicit ligand sampling and locally enhanced sampling to determine oxygen pathways from the bulk solvent into the mCherry chromophore in the interior of the protein. The pathway contains several oxygen hosting pockets, which were identified by the amino acid residues that form the pocket. We calculated the free-energy of an oxygen molecule at points along the path. We also investigated an RFP variant known to be significantly less photostable than mCherry and find much easier oxygen access in this variant. We showed that oxygen pathways can be blocked or altered, and barrel fluctuations can be reduced by strategic amino acid substitutions. The results provide a better understanding of the mechanism of molecular oxygen access into the fully folded mCherry protein barrel and provide insight into the photobleaching process in these proteins.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chloroperoxidase (CPO), a 298-residue glycosylated protein from the fungus Caldariomyces fumago, is probably the most versatile heme enzyme yet discovered. Interest in CPO as a catalyst is based on its power to produce enantiomerically enriched products. Recent research has focused its attention on the ability of CPO to epoxidize alkenes in high regioselectivity and enantioselectivity as an efficient and environmentally benign alternative to traditional synthetic routes. There has been little work on the nature of ligand binding, which probably controls the regio- and enantiospecifity of CPO. Consequently it is here that we focus our work. We report docking calculations and computer simulations aimed at predicting the enantiospecificity of CPO-catalyzed epoxidation of three model substrates. On the basis of this work candidate mutations to improve the efficiency of CPO are predicted. In order to accomplish these aims, a simulated annealing and molecular dynamics protocol is developed to sample potentially reactive substrate/CPO complexes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In Brazil, there is a high incidence of venomous animals. Among them, scorpions are highlighted by their medical importance, and for being their venom a source of several molecules with biological and pharmacological activity not yet fully understood, including several bioactive peptides. Antimicrobial peptides (AMPs) are components of the immune system in prokaryotes and eukaryotes, used in the first line of defense against microorganisms. In the present study, we characterized the first PAM previously identified through transcriptome of the venom gland of the scorpion Tityus stigmurus, named Stigmurin. The characteristics of Stigmurin were investigated by computational modeling and construction of dendrogram. In vitro tests investigated the antibacterial, antifungal, haemolytic and cytotoxic effects of crude venom and Stigmurin. In addition, the structural characteristics of Stigmurin were investigated by circular dochroism in water, 2, 2 , 2- trifluoethanol (TFE) and sodium dodecyl sulfate (SDS) and the models were refined by molecular dynamics simulations. The results showed that the selected sequence encodes a mature protein of 17 amino acid residues and the dendrogram reveals a case of convergent evolution. The crude venom showed no antimicrobial activity, however, Stigmurin exhibited a broad spectrum of antibacterial activity, with minimal inhibitory concentrations (MIC) ranging from 31.25 and 250 µg/mL for different strains, while the hemolytic activity at these concentrations was low. In cytotoxicity studies, the crude venom was unable to reduce cell viability in VERO E6 cells; in contrast, its activity in SiHa cells was significantly higher, corresponding to IC50 of 3.6 µg/mL. For Stigmurin the concentration sable to decrease cell viability of Vero E6 and SiHa cells in 50% were 275.67 µg/mL and 212.54 µg/mL, respectively. The dichroism spectra revealed the conformational flexibility, with predominating extended and β–sheet structures, as well as a remark able renaturation ability. The results suggest that Stigmurin could be considered as a potential antiinfective drug

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis was performed in four chapters, at the theoretical level, focused mainly on electronic density. In the first chapter, we have applied an undergraduate minicourse of Diels-Alder reaction in Federal University of Rio Grande do Norte. By using computational chemistry tools students could build the knowledge by themselves and they could associate important aspects of physical-chemistry with Organic Chemistry. In the second chapter, we studied a new type of chemical bond between a pair of identical or similar hydrogen atoms that are close to electrical neutrality, known as hydrogen-hydrogen (H-H) bond. In this study performed with complexed alkanes, provides new and important information about their stability involving this type of interaction. We show that the H-H bond playing a secondary role in the stability of branched alkanes in comparison with linear or less branched isomers. In the third chapter, we study the electronic structure and the stability of tetrahedrane, substituted tetrahedranes and silicon and germanium parents, it was evaluated the substituent effect on the carbon cage in the tetrahedrane derivatives and the results indicate that stronger electron withdrawing groups (EWG) makes the tetrahedrane cage slightly unstable while slight EWG causes a greater instability in the tetrahedrane cage. We showed that the sigma aromaticity EWG and electron donating groups (EDG) results in decrease and increase, respectively, of NICS and D3BIA aromaticity indices. In addition, another factor can be utilized to explain the stability of tetra-tert-butyltetrahedrane as well as HH bond. GVB and ADMP were also used to explain the stability effect of the substituents bonded to the carbon of the tetrahedrane cage. In the fourth chapter, we performed a theoretical investigation of the inhibitory effect of the drug abiraterone (ABE), used in the prostate cancer treatment as CYP17 inhibitor, comparing the interaction energies and electron density of the ABE with the natural substrate, pregnenolone (PREG). Molecular dynamics and docking were used to obtain the CYP1ABE and CYP17-PREG complexes. From molecular dynamics was obtained that the ABE has higher diffusion trend water CYP17 binding site compared to the PREG. With the ONIOM (B3LYP:AMBER) method, we find that the interaction electronic energy of ABE is 21.38 kcal mol-1 more stable than PREG. The results obtained by QTAIM indicate that such stability is due a higher electronic density of interactions between ABE and CYP17

Relevância:

60.00% 60.00%

Publicador:

Resumo:

G protein-coupled receptors are allosteric proteins that control transmission of external signals to regulate cellular response. Although agonist binding promotes canonical G protein signalling transmitted through conformational changes, G protein-coupled receptors also interact with other proteins. These include other G protein-coupled receptors, other receptors and channels, regulatory proteins and receptor-modifying proteins, notably receptor activity-modifying proteins (RAMPs). RAMPs have at least 11 G protein-coupled receptor partners, including many class B G protein-coupled receptors. Prototypic is the calcitonin receptor, with altered ligand specificity when co-expressed with RAMPs. To gain molecular insight into the consequences of this protein–protein interaction, we combined molecular modelling with mutagenesis of the calcitonin receptor extracellular domain, assessed in ligand binding and functional assays. Although some calcitonin receptor residues are universally important for peptide interactions (calcitonin, amylin and calcitonin gene-related peptide) in calcitonin receptor alone or with receptor activity-modifying protein, others have RAMP-dependent effects, whereby mutations decreased amylin/calcitonin gene-related peptide potency substantially only when RAMP was present. Remarkably, the key residues were completely conserved between calcitonin receptor and AMY receptors, and between subtypes of AMY receptor that have different ligand preferences. Mutations at the interface between calcitonin receptor and RAMP affected ligand pharmacology in a RAMP-dependent manner, suggesting that RAMP may allosterically influence the calcitonin receptor conformation. Supporting this, molecular dynamics simulations suggested that the calcitonin receptor extracellular N-terminal domain is more flexible in the presence of receptor activity-modifying protein 1. Thus, RAMPs may act in an allosteric manner to generate a spectrum of unique calcitonin receptor conformational states, explaining the pharmacological preferences of calcitonin receptor-RAMP complexes. This provides novel insight into our understanding of G protein-coupled receptor-protein interaction that is likely broadly applicable for this receptor class.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Layered metal oxides provide a single-step route to sheathed superlattices of atomic layers of a variety of inorganic materials, where the interlayer spacing and overall layered structure forms the most critical feature in the nanomaterials’ growth and application in electronics, health, and energy storage. We use a combination of computer simulations and experiments to describe the atomic-scale structure, dynamics and energetics of alkanethiol-intercalated layered vanadium oxide-based nanostructures. Molecular dynamics (MD) simulations identify the unusual substrate-constrained packing of the alkanethiol surfactant chains along each V2O5 (010) face that combines with extensive interdigitation between chains on opposing faces to maximize three-dimensional packing in the interlayer regions. The findings are supported by high resolution electron microscopy analyses of synthesized alkanethiol-intercalated vanadium oxide nanostructures, and the preference for this new interdigitated model is clarified using a large set of MD simulations. This dependency stresses the importance of organic–inorganic interactions in layered material systems, the control of which is central to technological applications of flexible hybrid nanomaterials.