1000 resultados para mitochondrial proteome


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The expressional profile of mitochondrial transcripts and of genes involved in the mitochondrial biogenesis pathway induced by ALCAR daily supplementation in soleus muscle of control and unloaded 3-month-old rats has been analyzed. It has been found that ALCAR treatment is able to upregulate the expression level of mitochondrial transcripts (COX I, ATP6, ND6, 16 S rRNA) in both control and unloaded animals. Interestingly, ALCAR feeding to unloaded rats resulted in the increase of transcript level for master factors involved in mitochondrial biogenesis (PGC-1alpha, NRF-1, TFAM). It also prevented the unloading-induced downregulation of mRNA levels for kinases able to transduce metabolic (AMPK) and neuronal stimuli (CaMKIIbeta) into mitochondrial biogenesis. No significant effect on the expressional level of such genes was found in control ALCAR-treated rats. In addition, ALCAR feeding was able to prevent the loss of mitochondrial protein content due to unloading condition. Correlation analysis revealed a strong coordination in the expression of genes involved in mitochondrial biogenesis only in ALCAR-treated suspended animals, supporting a differentiated effect of ALCAR treatment in relation to the loading state of the soleus muscle. In conclusions, we demonstrated the ability of ALCAR supplementation to promote only in soleus muscle of hindlimb suspended rats an orchestrated expression of genes involved in mitochondrial biogenesis, which might counteract the unloading-induced metabolic changes, preventing the loss of mitochondrial proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: Mitochondrial respiration is impaired during endotoxemia. While catecholamines are frequently used in sepsis, their effects on mitochondrial function are controversial. We assessed effects of dobutamine and dopamine endotoxin on isolated muscle mitochondria. MATERIALS AND METHODS: Sternocleidomastoid muscle mitochondria were isolated from six anesthetized pigs. Each sample was divided into six different groups. Three groups were incubated with endotoxin, three with vehicle. After 1 h, dopamine and dobutamine at final concentrations of 100 microM were added to the vehicle and endotoxin groups. After 2 h, state 3 and 4 respiration rates were determined for all mitochondrial complexes. Oxygen consumption was determined with a Clark-type electrode. RESULTS: Endotoxin increased glutamate-dependent state 4 respiration from 9.3 +/- 3.6 to 31.9 +/- 9.1 (P = 0.001) without affecting state 3 respiration. This reduced the efficiency of mitochondrial respiration (RCR; state 3/state 4, 9.9 +/- 1.9 versus 3.6 +/- 0.6; P < 0.001). The other complexes were unaffected. Catecholamine partially restored the endotoxin-induced increase in complex I state 4 respiration rate (31.9 +/- 9.1 versus 17.1 +/- 6.4 and 20.1 +/- 12.2) after dopamine and dobutamine, respectively (P = 0.007), and enhanced the ADP:O ratio (P = 0.033). CONCLUSIONS: Dopamine and dobutamine enhanced the efficiency of mitochondrial respiration after short-term endotoxin exposure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigates whether adaptations of mitochondrial function accompany the improvement of endurance performance capacity observed in well-trained athletes after an intermittent hypoxic training program. Fifteen endurance-trained athletes performed two weekly training sessions on treadmill at the velocity associated with the second ventilatory threshold (VT2) with inspired O2 fraction = 14.5% [hypoxic group (Hyp), n = 8] or with inspired O2 fraction = 21% [normoxic group (Nor), n = 7], integrated into their usual training, for 6 wk. Before and after training, oxygen uptake (VO2) and speed at VT2, maximal VO2 (VO2 max), and time to exhaustion at velocity of VO2 max (minimal speed associated with VO2 max) were measured, and muscle biopsies of vastus lateralis were harvested. Muscle oxidative capacities and sensitivity of mitochondrial respiration to ADP (Km) were evaluated on permeabilized muscle fibers. Time to exhaustion, VO2 at VT2, and VO2 max were significantly improved in Hyp (+42, +8, and +5%, respectively) but not in Nor. No increase in muscle oxidative capacity was obtained with either training protocol. However, mitochondrial regulation shifted to a more oxidative profile in Hyp only as shown by the increased Km for ADP (Nor: before 476 +/- 63, after 524 +/- 62 microM, not significant; Hyp: before 441 +/- 59, after 694 +/- 51 microM, P < 0.05). Thus including hypoxia sessions into the usual training of athletes qualitatively ameliorates mitochondrial function by increasing the respiratory control by creatine, providing a tighter integration between ATP demand and supply.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Ca(2+)-binding proteins parvalbumin (PV) and calbindin D-28k (CB) are key players in the intracellular Ca(2+)-buffering in specific cells including neurons and have profound effects on spatiotemporal aspects of Ca(2+) transients. The previously observed increase in mitochondrial volume density in fast-twitch muscle of PV-/- mice is viewed as a specific compensation mechanism to maintain Ca(2+) homeostasis. Since cerebellar Purkinje cells (PC) are characterized by high expression levels of the Ca(2+) buffers PV and CB, the question was raised, whether homeostatic mechanisms are induced in PC lacking these buffers. Mitochondrial volume density, i.e. relative mitochondrial mass was increased by 40% in the soma of PV-/- PC. Upregulation of mitochondrial volume density was not homogenous throughout the soma, but was selectively restricted to a peripheral region of 1.5 microm width underneath the plasma membrane. Accompanied was a decreased surface of subplasmalemmal smooth endoplasmic reticulum (sPL-sER) in a shell of 0.5 microm thickness underneath the plasma membrane. These alterations were specific for the absence of the "slow-onset" buffer PV, since in CB-/- mice neither changes in peripheral mitochondria nor in sPL-sER were observed. This implicates that the morphological alterations are aimed to specifically substitute the function of the slow buffer PV. We propose a novel concept that homeostatic mechanisms of components involved in Ca(2+) homeostasis do not always occur at the level of similar or closely related molecules. Rather the cell attempts to restore spatiotemporal aspects of Ca(2+) signals prevailing in the undisturbed (wildtype) situation by subtly fine tuning existing components involved in the regulation of Ca(2+) fluxes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a comparative proteomic analysis of human maternal plasma and amniotic fluid (AF) samples from the same patient at term of pregnancy in order to find specific AF proteins as markers of premature rupture of membranes, a complication frequently observed during pregnancy. Maternal plasma and the corresponding AF were immunodepleted in order to remove the six most abundant proteins before the systematic analysis of their protein composition. The protein samples were then fractionated by IEF Off-Gel electrophoresis (OGE), digested and analyzed with nano-LC-MS/MS separation, revealing a total of 73 and 69 proteins identified in maternal plasma and AF samples, respectively. The proteins identified in AF have been compared to those identified in the mother plasma as well as to the reference human plasma protein list reported by Anderson et al. (Mol. Cell. Proteomics 2004, 3, 311-326). This comparison showed that 26 proteins were exclusively present in AF and not in plasma among which 10 have already been described to be placenta or pregnancy specific. As a further validation of the method, plasma proteins fractionated by OGE and analysed by nano-LC-MS/MS have been compared to the Swiss 2-D PAGE reference map by reconstructing a map that matches 2-D gel and OGE experimental data. This representation shows that 36 of 49 reference proteins could be identified in both data sets, and that isoform shifts in pI are well conserved in the OGE data sets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analysed a 610-bp mitochondrial (mt)DNA D-loop fragment in a sample of German draught horse breeds and compared the polymorphic sites with sequences from Arabian, Hanoverian, Exmoor, Icelandic, Sorraia and Przewalski's Horses as well as with Suffolk, Shire and Belgian horses. In a total of 65 horses, 70 polymorphic sites representing 47 haplotypes were observed. The average percentage of polymorphic sites was 11.5% for the mtDNA fragment analysed. In the nine different draught horse breeds including South German, Mecklenburg, Saxon Thuringa coldblood, Rhenisch German, Schleswig Draught Horse, Black Forest Horse, Shire, Suffolk and Belgian, 61 polymorphic sites and 24 haplotypes were found. The phylogenetic analysis failed to show monophyletic groups for the draught horses. The analysis indicated that the draught horse populations investigated consist of diverse genetic groups with respect to their maternal lineage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mitochondrial F(1)F(o)-ATP synthase is a molecular motor that couples the energy generated by oxidative metabolism to the synthesis of ATP. Direct visualization of the rotary action of the bacterial ATP synthase has been well characterized. However, direct observation of rotation of the mitochondrial enzyme has not been reported yet. Here, we describe two methods to reconstitute mitochondrial F(1)F(o)-ATP synthase into lipid bilayers suitable for structure analysis by electron and atomic force microscopy (AFM). Proteoliposomes densely packed with bovine heart mitochondria F(1)F(o)-ATP synthase were obtained upon detergent removal from ternary mixtures (lipid, detergent and protein). Two-dimensional crystals of recombinant hexahistidine-tagged yeast F(1)F(o)-ATP synthase were grown using the supported monolayer technique. Because the hexahistidine-tag is located at the F(1) catalytic subcomplex, ATP synthases were oriented unidirectionally in such two-dimensional crystals, exposing F(1) to the lipid monolayer and the F(o) membrane region to the bulk solution. This configuration opens a new avenue for the determination of the c-ring stoichiometry of unknown hexahistidine-tagged ATP synthases and the organization of the membrane intrinsic subunits within F(o) by electron microscopy and AFM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a rare autosomal recessive disorder in which a nuclear mutation of the thymidine phosphorylase (TP) gene causes mitochondrial genomic dysfunction. Patients suffer from gastrointestinal dysmotility, cachexia, ptosis, external ophthalmoparesis, myopathy and polyneuropathy. Magnetic resonance imaging (MRI) shows leukoencephalopathy. We describe clinical, genetic and neuroradiological features of three brothers affected with MNGIE. Clinical examination, laboratory analyses, MRI and magnetic resonance spectroscopy (MRS) of the brain, and genetic analysis have been performed in all six members of the family with the three patients with MNGIE. Two of them are monozygous twins. They all suffered from gastrointestinal dysmotility, cachexia, ophthalmoplegia, muscular atrophies, and polyneuropathy. Urinary thymidine was elevated in the patients related to the severity of clinical disease, and urinary thymidine (normally not detectable) was also found in a heterozygous carrier. Brain MRI showed leukoencephalopathy in all patients; however, their cognitive functioning was normal. Brain MRS demonstrated reduced N-acetylaspartate and choline in severely affected areas. MRI of heterozygous carriers was normal. A new mutation (T92N) in the TP gene was identified. Urinary thymidine is for the first time reported to be detectable in a heterozygous carrier. MRS findings indicate loss of neurons, axons, and glial cells in patients with MNGIE, but not in heterozygous carriers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT: INTRODUCTION: Low blood pressure, inadequate tissue oxygen delivery and mitochondrial dysfunction have all been implicated in the development of sepsis-induced organ failure. This study evaluated the effect on liver mitochondrial function of using norepinephrine to increase blood pressure in experimental sepsis. METHODS: Thirteen anaesthetized pigs received endotoxin (Escherichia coli lipopolysaccharide B0111:B4; 0.4 mug/kg per hour) and were subsequently randomly assigned to norepinephrine treatment or placebo for 10 hours. Norepinephrine dose was adjusted at 2-hour intervals to achieve 15 mmHg increases in mean arterial blood pressure up to 95 mmHg. Systemic (thermodilution) and hepatosplanchnic (ultrasound Doppler) blood flow were measured at each step. At the end of the experiment, hepatic mitochondrial oxygen consumption (high-resolution respirometry) and citrate synthase activity (spectrophotometry) were assessed. RESULTS: Mean arterial pressure (mmHg) increased only in norepinephrine-treated animals (from 73 [median; range 69 to 81] to 63 [60 to 68] in controls [P = 0.09] and from 83 [69 to 93] to 96 [86 to 108] in norepinephrine-treated animals [P = 0.019]). Cardiac index and systemic oxygen delivery (DO2) increased in both groups, but significantly more in the norepinephrine group (P < 0.03 for both). Cardiac index (ml/min per.kg) increased from 99 (range: 72 to 112) to 117 (110 to 232) in controls (P = 0.002), and from 107 (84 to 132) to 161 (147 to 340) in norepinephrine-treated animals (P = 0.001). DO2 (ml/min per.kg) increased from 13 (range: 11 to 15) to 16 (15 to 24) in controls (P = 0.028), and from 16 (12 to 19) to 29 (25 to 52) in norepinephrine-treated animals (P = 0.018). Systemic oxygen consumption (systemic VO2) increased in both groups (P < 0.05), whereas hepatosplanchnic flows, DO2 and VO2 remained stable. The hepatic lactate extraction ratio decreased in both groups (P = 0.05). Liver mitochondria complex I-dependent and II-dependent respiratory control ratios were increased in the norepinephrine group (complex I: 3.5 [range: 2.1 to 5.7] in controls versus 5.8 [4.8 to 6.4] in norepinephrine-treated animals [P = 0.015]; complex II: 3.1 [2.3 to 3.8] in controls versus 3.7 [3.3 to 4.6] in norepinephrine-treated animals [P = 0.09]). No differences were observed in citrate synthase activity. CONCLUSION: Norepinephrine treatment during endotoxaemia does not increase hepatosplanchnic flow, oxygen delivery or consumption, and does not improve the hepatic lactate extraction ratio. However, norepinephrine increases the liver mitochondria complex I-dependent and II-dependent respiratory control ratios. This effect was probably mediated by a direct effect of norepinephrine on liver cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During therapeutic hyperbaric oxygenation lymphocytes are exposed to high partial pressures of oxygen. This study aimed to analyze the mechanism of apoptosis induction by hyperbaric oxygen. For intervals of 0.5-4 h Jurkat-T-cells were exposed to ambient air or oxygen atmospheres at 1-3 absolute atmospheres. Apoptosis was analyzed by phosphatidylserine externalization, caspase-3 activation and DNA-fragmentation using flow cytometry. Apoptosis was already induced after 30 min of hyperbaric oxygenation (HBO, P < 0.05). The death receptor Fas was downregulated. Inhibition of caspase-9 but not caspase-8 blocked apoptosis induction by HBO. Hyperbaric oxygen caused a loss of mitochondrial membrane potential and caspase-9 induction. The mitochondrial pro-survival protein Bcl-2 was upregulated, and antagonizing Bcl-2 function potentiated apoptosis induction by HBO. In conclusion, a single exposure to hyperbaric oxygenation induces lymphocyte apoptosis by a mitochondrial and not a Fas-related mechanism. Regulation of Fas and Bcl-2 may be regarded as protective measures of the cell in response to hyperbaric oxygen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although eosinophils are considered useful in defense mechanisms against parasites, their exact function in innate immunity remains unclear. The aim of this study is to better understand the role of eosinophils within the gastrointestinal immune system. We show here that lipopolysaccharide from Gram-negative bacteria activates interleukin-5 (IL-5)- or interferon-gamma-primed eosinophils to release mitochondrial DNA in a reactive oxygen species-dependent manner, but independent of eosinophil death. Notably, the process of DNA release occurs rapidly in a catapult-like manner--in less than one second. In the extracellular space, the mitochondrial DNA and the granule proteins form extracellular structures able to bind and kill bacteria both in vitro and under inflammatory conditions in vivo. Moreover, after cecal ligation and puncture, Il5-transgenic but not wild-type mice show intestinal eosinophil infiltration and extracellular DNA deposition in association with protection against microbial sepsis. These data suggest a previously undescribed mechanism of eosinophil-mediated innate immune responses that might be crucial for maintaining the intestinal barrier function after inflammation-associated epithelial cell damage, preventing the host from uncontrolled invasion of bacteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cancer cells acquire drug resistance as a result of selection pressure dictated by unfavorable microenvironments. This survival process is facilitated through efficient control of oxidative stress originating from mitochondria that typically initiates programmed cell death. We show this critical adaptive response in cancer cells to be linked to uncoupling protein-2 (UCP2), a mitochondrial suppressor of reactive oxygen species (ROS). UCP2 is present in drug-resistant lines of various cancer cells and in human colon cancer. Overexpression of UCP2 in HCT116 human colon cancer cells inhibits ROS accumulation and apoptosis after exposure to chemotherapeutic agents. Tumor xenografts of UCP2-overexpressing HCT116 cells retain growth in nude mice receiving chemotherapy. Augmented cancer cell survival is accompanied by altered NH(2)-terminal phosphorylation of the pivotal tumor suppressor p53 and induction of the glycolytic phenotype (Warburg effect). These findings link UCP2 with molecular mechanisms of chemoresistance. Targeting UCP2 may be considered a novel treatment strategy for cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sepsis-related organ failure is the leading cause of mortality in European intensive care units (ICU). Although the inflammatory cascade of mediators in response to infection is well known, the relationships between regional inflammation, microvascular heterogeneity, hypoxia and hypoxia-inducible gene expression, and finally, organ dysfunction, are unknown. Growing evidence suggests that not only low oxygen supply to the tissues secondary to macrovascular and microvascular alterations, but also altered cellular oxygen utilization is involved in the development of multiorgan dysfunction [1]–[3]. Microbial products and innate and adaptive dysregulated immune response to infection directly affect parenchymal cells of organs and may contribute to multiorgan dysfunction.