958 resultados para metal-organic precursors


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Newsletter produced by Iowa Department of Agriculture and Land Stewardship about Organic News in farming.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arabidopsis thaliana contains two genes encoding farnesyl diphosphate (FPP) synthase (FPS), the prenyl diphoshate synthase that catalyzes the synthesis of FPP from isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). In this study, we provide evidence that the two Arabidopsis short FPS isozymes FPS1S and FPS2 localize to the cytosol. Both enzymes were expressed in E. coli, purified and biochemically characterized. Despite FPS1S and FPS2 share more than 90% amino acid sequence identity, FPS2 was found to be more efficient as a catalyst, more sensitive to the inhibitory effect of NaCl, and more resistant to thermal inactivation than FPS1S. Homology modelling for FPS1S and FPS2 and analysis of the amino acid differences between the two enzymes revealed an increase in surface polarity and a greater capacity to form surface salt bridges of FPS2 compared to FPS1S. These factors most likely account for the enhanced thermostability of FPS2. Expression analysis of FPS::GUS genes in seeds showed that FPS1 and FPS2 display complementary patterns of expression particularly at late stages of seed development, which suggests that Arabidopsis seeds have two spatially segregated sources of FPP. Functional complementation studies of the Arabidopsis fps2 knockout mutant seed phenotypes demonstrated that under normal conditions FPS1S and FPS2 are functionally interchangeable. A putative role for FPS2 in maintaining seed germination capacity under adverse environmental conditions is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kinetic studies on soil potassium release can contribute to a better understanding of K availability to plants. This study was conducted to evaluate K release rates from the whole soil, clay, silt, and sand fractions of B-horizon samples of a basalt-derived Oxisol and a sienite-derived Ultisol, both representative soils from coffee regions of Minas Gerais State, Brazil. Potassium was extracted from each fraction after eight different shaking time periods (0-665 h) with either 0.001 mol L-1 citrate or oxalate at a 1:10 solid:solution ratio. First-order, Elovich, zero-order, and parabolic diffusion equations were used to parameterize the time dependence of K release. For the Oxisol, the first-order equation fitted best to the experimental data of K release, with similar rates for all fractions and independent of the presence of citrate or oxalate in the extractant solution. For all studied Ultisol fractions, in which K release rates increased when extractions were performed with citrate solution, the Elovich model described K release kinetics most adequately. The highest potassium release rate of the Ultisol silt fraction was probably due to the transference of "non-exchangeable" K to the extractant solution, whereas in the Oxisol exchangeable potassium represented the main K source in all studied fractions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The new techniques proposed for agriculture in the Amazon region include rotational fallow systems enriched with leguminous trees and the replacement of biomass burning by mulching. Decomposition and nutrient release from mulch were studied using fine-mesh litterbags with five different leguminous species and the natural fallow vegetation as control. Samples from each treatment were analyzed for total C, N, P, K, Ca, Mg, lignin, cellulose content and soluble polyphenol at different sampling times over the course of one year. The decomposition rate constant varied with species and time. Weight loss from the decomposed litter bag material after 96 days was 30.1 % for Acacia angustissima, 32.7 % for Sclerolobium paniculatum, 33.9 % for Iinga edulis and the Fallow vegetation, 45.2 % for Acacia mangium and 63.6 % for Clitoria racemosa. Immobilization of N and P was observed in all studied treatments. Nitrogen mineralization was negatively correlated with phenol, C-to-N ratio, lignin + phenol/N ratio, and phenol/phosphorus ratios and with N content in the litterbag material. After 362 days of field incubation, an average (of all treatments), 3.3 % K, 32.2 % Ca and 22.4 % Mg remained in the mulch. Results confirm that low quality and high amount of organic C as mulch application are limiting for the quantity of energy available for microorganisms and increase the nutrient immobilization for biomass decomposition, which results in competition for nutrients with the crop plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose:To identify the gene causing rod-cone dystrophy/amelogenesis imperfecta Methods:Homozygosity mapping was performed using the Affymetrix 50K XbaI array in one family and candidate genes in the linked interval were sequenced with ABI Dye Terminator, vers. 1 in the index patient of 3 families. The identified mutations were screened in normal control individuals. Expression analyses were performed on RNA extracted from the brain, various parts of the eye and teeth; immunostaining was done on mouse eyes and jaw and knock-down experiments were carried out in zebrafish embroys. Results:Sequencing the coding regions of ancient conserved domain protein 4 (CNNM4), a metal ions transporter, revealed a 1-base pair duplication (p.L438fs) in family A, a p.R236Q mutation in family B and a p.L324P in family C. All these mutations were homozygous and involved very conserved amino acids in paralogs and orthologs. Immunostaining and RT-PCR confirmed that CNNM4 was strongly expressed in various parts of the eye and in the teeth. Morpholino experiments in zebrafish showed a loss of ganglion cells at 5 days post fertilization. Conclusions:The rod-cone dystrophy/amelogenesis imperfecta syndrome is caused by mutation in CNNM4 and is due to aberrant metal ion homeostasis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sulfur in the soil occurs in two basic forms, organic and inorganic S. The organic form accounts for 95 % of S in most soils. The effectiveness of organic S to oxidate to sulfate was evaluated for total S determination in soil samples by wet (acid) and dry-ash (alkaline) oxidation methods. To evaluate the wet method and the possible use as a reference when evaluating the dry method proposed here, a reference standard from the US National Institute of Standards and Technology (NIST) was used (Montana Soil - NIST 2710). The dry-ash oxidation process with alkaline oxidizing agents is one of the simplest oxidation methods of organic S to the sulfate form and was compared with the wet process. The objective of the study was to develop a dry method that would be easy to apply and allow the complete conversion of organic S to sulfate in soil samples and later detection by turbidimetry. The effectiveness of organic S oxidation to sulfate was evaluated by means of three alkaline oxidation mixtures: NaHCO3 + Ag2O, Eschka mixture (17 % Na2CO3, 66 % MgO, and 17 % K2CO3), and NaHCO3 + CuO. The procedure to quantify the sulfate concentration was based on the reaction with barium chloride and turbidimetric detection. Sulfur quantification in the standard sample by the wet method proved adequate, precise and accurate. It should also be pointed out that no significant differences were found (95 % reliability) between the wet and dry processes (NaHCO3 and Ag2O oxidation mixture) in six different Brazilian soils. The proposed dry method can therefore be used in the preparation of soil samples for total S determination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Birnessites precipitated by bacteria are typically poorly crystalline Mn(IV) oxides enmeshed within biofilms to form complex biomass-birnessite assemblages. The strong sorption affinity of bacteriogenic birnessites for environmentally important trace metals is relatively well understood mechanistically, but the role of bacterial cells and extracellular polymeric substances appears to vary among trace metals. To assess the role of biomass definitively, comparison between metal sorption by biomass at high metal loadings in the presence and absence of birnessite is required. We investigated the biomass effect on Ni sorption through laboratory experiments utilizing the birnessite produced by the model bacterium, Pseudomonas putida. Surface excess measurements at pH 6?8 showed that birnessite significantly enhanced Ni sorption at high loadings (up to nearly 4-fold) relative to biomass alone. This apparent large difference in affinity for Ni between the organic and mineral components was confirmed by extended X-ray absorption fine structure spectroscopy, which revealed preferential Ni binding to birnessite cation vacancy sites. At pH >= 7, Ni sorption involved both adsorption and precipitation reactions. Our results thus support the view that the biofilm does not block reactive mineral surface sites; instead, the organic material contributes to metal sorption once high-affinity sites on the mineral are saturated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fertility properties, total C (Ctot), and chemical soil organic matter fractions (fulvic acid fraction - FA, humic acid fraction - HA, humin fraction - H) of anthropogenic dark earths (Terra Preta de Índio) of the Amazon basin were compared with those of Ferralsols with no anthropogenic A horizon. Terra Preta soils had a higher fertility (pH: 5.1-5.4; Sum of bases, SB: 8.93-10.33 cmol c kg-1 , CEC: 17.2-17.5 cmol c kg-1 , V: 51-59 %, P: 116-291 mg kg-1) and Ctot (44.6-44.7 g kg-1) than adjacent Ferralsols (pH: 4.4; SB: 2.04 cmol c kg-1, CEC: 9.5 cmol c kg-1, V: 21 %, P 5 mg kg-1, C: 37.9 g kg-1). The C distribution among humic substance fractions (FA, HA, H) in Terra Preta soils was also different, as shown by the ratios HA:FA and EA/H (EA=HA+FA) (2.1-3.0 and 1.06-1.08 for Terra Preta and 1.2 and 0.72 for Ferralsols, respectively). While the cation exchange capacity (CEC), of Ferralsols correlated with FA (r = 0.97), the CEC of Terra Preta correlated with H (r = 0.82). The correlation of the fertility of Terra Preta with the highly stable soil organic matter fraction (H) is highly significant for the development of sustainable soil fertility management models in tropical ecosystems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We carry out a self-consistent analytical theory of unipolar current and noise properties of metal-semiconductor-metal structures made of highly resistive semiconductors in the presence of an applied bias of arbitrary strength. By including the effects of the diffusion current we succeed in studying the whole range of carrier injection conditions going from low level injection, where the structure behaves as a linear resistor, to high level injection, where the structure behaves as a space charge limited diode. We show that these structures display shot noise at the highest voltages. Remarkably the crossover from Nyquist noise to shot noise exhibits a complicated behavior with increasing current where an initial square root dependence (double thermal noise) is followed by a cubic power law.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selostus: Haihtuvien orgaanisten yhdisteiden muodostuminen kuivikkeissa

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we demonstrate that conductive atomic force microscopy (C-AFM) is a very powerful tool to investigate, at the nanoscale, metal-oxide-semiconductor structures with silicon nanocrystals (Si-nc) embedded in the gate oxide as memory devices. The high lateral resolution of this technique allows us to study extremely small areas ( ~ 300nm2) and, therefore, the electrical properties of a reduced number of Si-nc. C-AFM experiments have demonstrated that Si-nc enhance the gate oxide electrical conduction due to trap-assisted tunneling. On the other hand, Si-nc can act as trapping centers. The amount of charge stored in Si-nc has been estimated through the change induced in the barrier height measured from the I-V characteristics. The results show that only ~ 20% of the Si-nc are charged, demonstrating that the electrical behavior at the nanoscale is consistent with the macroscopic characterization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports the microstructural analysis of S-rich CuIn(S,Se)2 layers produced by electrodeposition of CuInSe2 precursors and annealing under sulfurizing conditions as a function of the temperature of sulfurization. The characterization of the layers by Raman scattering, scanning electron microscopy, Auger electron spectroscopy, and XRD techniques has allowed observation of the strong dependence of the crystalline quality of these layers on the sulfurization temperature: Higher sulfurization temperatures lead to films with improved crystallinity, larger average grain size, and lower density of structural defects. However, it also favors the formation of a thicker MoS2 interphase layer between the CuInS2 absorber layer and the Mo back contact. Decreasing the temperature of sulfurization leads to a significant decrease in the thickness of this intermediate layer and is also accompanied by significant changes in the composition of the interface region between the absorber and the MoS2 layer, which becomes Cu rich. The characterization of devices fabricated with these absorbers corroborates the significant impact of all these features on device parameters as the open circuit voltage and fill factor that determine the efficiency of the solar cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Knowledge on variations in vertical, horizontal and temporal characteristics of the soil chemical properties under eucalyptus stumps left in the soil is of fundamental importance for the management of subsequent crops. The objective of this work was to evaluate the effect of eucalyptus stumps (ES) left after cutting on the spatial variability of chemical characteristics in a dystrophic Yellow Argisol in the eastern coastal plain region of Brazil. For this purpose, ES left for 31 and 54 months were selected in two experimental areas with similar characteristics, to assess the decomposition effects of the stumps on soil chemical attributes. Soil samples were collected directly around these ES, and at distances of 30, 60, 90, 120 and 150 cm away from them, in the layers 0-10, 10-20 and 20-40 cm along the row of ES, which is in-between the rows of eucalyptus trees of a new plantation, grown at a spacing of 3 x 3 m. The soil was sampled in five replications in plots of 900 m² each and the samples analyzed for pH, available P and K (Mehlich-1), exchangeable Al, Ca and Mg, total organic carbon (TOC) and C content in humic substances (HS) and in the free light fraction. The pH values and P, K, Ca2+, Mg2+ and Al3+ contents varied between the soil layers with increasing distance from the 31 and 54-monthold stumps. The highest pH, P, K, Ca2+ and Mg2+ values and the lowest Al3+ content were found in the surface soil layer. The TOC of the various fractions of soil organic matter decreased with increasing distance from the 31 and 54-month-old ES in the 0-10 and 10-20 cm layers, indicating that the root (and stump) cycling and rhizodeposition contribute to maintain soil organic matter. The C contents of the free light fraction, of the HS and TOC fractions were higher in the topsoil layer under the ES left for 31 months due to the higher clay levels of this layer, than in those found under the 54-month-old stumps. However, highest C levels of the different fractions of soil organic matter in the topsoil layer reflect the deposition and maintenance of forest residues on the soil surface, mainly after forest harvest.