970 resultados para mean-variance estimation
Resumo:
Part I of this series of articles focused on the construction of graphical probabilistic inference procedures, at various levels of detail, for assessing the evidential value of gunshot residue (GSR) particle evidence. The proposed models - in the form of Bayesian networks - address the issues of background presence of GSR particles, analytical performance (i.e., the efficiency of evidence searching and analysis procedures) and contamination. The use and practical implementation of Bayesian networks for case pre-assessment is also discussed. This paper, Part II, concentrates on Bayesian parameter estimation. This topic complements Part I in that it offers means for producing estimates useable for the numerical specification of the proposed probabilistic graphical models. Bayesian estimation procedures are given a primary focus of attention because they allow the scientist to combine (his/her) prior knowledge about the problem of interest with newly acquired experimental data. The present paper also considers further topics such as the sensitivity of the likelihood ratio due to uncertainty in parameters and the study of likelihood ratio values obtained for members of particular populations (e.g., individuals with or without exposure to GSR).
Resumo:
Biochemical systems are commonly modelled by systems of ordinary differential equations (ODEs). A particular class of such models called S-systems have recently gained popularity in biochemical system modelling. The parameters of an S-system are usually estimated from time-course profiles. However, finding these estimates is a difficult computational problem. Moreover, although several methods have been recently proposed to solve this problem for ideal profiles, relatively little progress has been reported for noisy profiles. We describe a special feature of a Newton-flow optimisation problem associated with S-system parameter estimation. This enables us to significantly reduce the search space, and also lends itself to parameter estimation for noisy data. We illustrate the applicability of our method by applying it to noisy time-course data synthetically produced from previously published 4- and 30-dimensional S-systems. In addition, we propose an extension of our method that allows the detection of network topologies for small S-systems. We introduce a new method for estimating S-system parameters from time-course profiles. We show that the performance of this method compares favorably with competing methods for ideal profiles, and that it also allows the determination of parameters for noisy profiles.
Resumo:
To date, state-of-the-art seismic material parameter estimates from multi-component sea-bed seismic data are based on the assumption that the sea-bed consists of a fully elastic half-space. In reality, however, the shallow sea-bed generally consists of soft, unconsolidated sediments that are characterized by strong to very strong seismic attenuation. To explore the potential implications, we apply a state-of-the-art elastic decomposition algorithm to synthetic data for a range of canonical sea-bed models consisting of a viscoelastic half-space of varying attenuation. We find that in the presence of strong seismic attenuation, as quantified by Q-values of 10 or less, significant errors arise in the conventional elastic estimation of seismic properties. Tests on synthetic data indicate that these errors can be largely avoided by accounting for the inherent attenuation of the seafloor when estimating the seismic parameters. This can be achieved by replacing the real-valued expressions for the elastic moduli in the governing equations in the parameter estimation by their complex-valued viscoelastic equivalents. The practical application of our parameter procedure yields realistic estimates of the elastic seismic material properties of the shallow sea-bed, while the corresponding Q-estimates seem to be biased towards too low values, particularly for S-waves. Given that the estimation of inelastic material parameters is notoriously difficult, particularly in the immediate vicinity of the sea-bed, this is expected to be of interest and importance for civil and ocean engineering purposes.
Resumo:
A number of experimental methods have been reported for estimating the number of genes in a genome, or the closely related coding density of a genome, defined as the fraction of base pairs in codons. Recently, DNA sequence data representative of the genome as a whole have become available for several organisms, making the problem of estimating coding density amenable to sequence analytic methods. Estimates of coding density for a single genome vary widely, so that methods with characterized error bounds have become increasingly desirable. We present a method to estimate the protein coding density in a corpus of DNA sequence data, in which a ‘coding statistic’ is calculated for a large number of windows of the sequence under study, and the distribution of the statistic is decomposed into two normal distributions, assumed to be the distributions of the coding statistic in the coding and noncoding fractions of the sequence windows. The accuracy of the method is evaluated using known data and application is made to the yeast chromosome III sequence and to C.elegans cosmid sequences. It can also be applied to fragmentary data, for example a collection of short sequences determined in the course of STS mapping.
Resumo:
1. We investigated experimentally predation by the flatworm Dugesia lugubris on the snail Physa acuta in relation to predator body length and to prey morphology [shell length (SL) and aperture width (AW)]. 2. SL and AW correlate strongly in the field, but display significant and independent variance among populations. In the laboratory, predation by Dugesia resulted in large and significant selection differentials on both SL and AW. Analysis of partial effects suggests that selection on AW was indirect, and mediated through its strong correlation with SL. 3. The probability P(ij) for a snail of size category i (SL) to be preyed upon by a flatworm of size category j was fitted with a Poisson-probability distribution, the mean of which increased linearly with predator size (i). Despite the low number of parameters, the fit was excellent (r2 = 0.96). We offer brief biological interpretations of this relationship with reference to optimal foraging theory. 4. The largest size class of Dugesia (>2 cm) did not prey on snails larger than 7 mm shell length. This size threshold might offer Physa a refuge against flatworm predation and thereby allow coexistence in the field. 5. Our results are further discussed with respect to previous field and laboratory observations on P acuta life-history patterns, in particular its phenotypic variance in adult body size.
Resumo:
ABSTRACT: BACKGROUND: There is little information regarding the trends in body mass index (BMI) and obesity in the overall Portuguese population, namely if these trends are similar according to educational level. In this study, we assessed the trends in the prevalence of overweight and obesity in the Portuguese population, overall and by educational level. METHODS: Cross-sectional national health interview surveys conducted in 1995-6 (n=38,504), 1998-9 (n=38,688) and 2005-6 (n=25,348). Data were derived from the population and housing census of 1991 and two geographically-based strata were defined. The sampling unit was the house, and all subjects living in the sampling unit were surveyed. Height and weight were self-reported; the effects of gender, age group and educational level were also assessed by self-reported structured questionnaires. Bivariate comparisons were performed using Chi-square or analysis of variance (ANOVA). Trends in BMI levels were assessed by linear regression analysis, while trends in the prevalence of obesity were assessed by logistic regression. RESULTS: Mean (+/-standard deviation) BMI increased from 25.2+/-4.0 in 1995-6 to 25.7+/-4.5 kg/m2 in 2005-6. Prevalence of overweight remained stable (36.1% in 1995-6 and 36.4% in 2005) while prevalence of obesity increased (11.5% in 1995-6 and 15.1% in 2005-6). Similar findings were observed according to age group. Mean age-adjusted BMI increase (expressed in kg/m2/year and 95% confidence interval) was 0.073 (0.062, 0.084), 0.016 (0.000, 0.031) and 0.073 (0.049, 0.098) in men with primary, secondary and university levels, respectively; the corresponding values in women were 0.085 (0.073, 0.097), 0.052 (0.035, 0.069) and 0.062 (0.038, 0.084). Relative to 1995-6, obesity rates increased by 48%, 41% and 59% in men and by 40%, 75% and 177% in women with primary, secondary and university levels, respectively. The corresponding values for overweight were 6%, 1% and 23% in men and 5%, 7% and 65% in women. CONCLUSION: Between 1995 and 2005, obesity increased while overweight remained stable in the adult Portuguese population. Although higher rates were found among lesser educated subjects, the strong increase in BMI and obesity levels in highly educated subjects is of concern.
Resumo:
This paper presents a new registration algorithm, called Temporal Di eomorphic Free Form Deformation (TDFFD), and its application to motion and strain quanti cation from a sequence of 3D ultrasound (US) images. The originality of our approach resides in enforcing time consistency by representing the 4D velocity eld as the sum of continuous spatiotemporal B-Spline kernels. The spatiotemporal displacement eld is then recovered through forward Eulerian integration of the non-stationary velocity eld. The strain tensor iscomputed locally using the spatial derivatives of the reconstructed displacement eld. The energy functional considered in this paper weighs two terms: the image similarity and a regularization term. The image similarity metric is the sum of squared di erences between the intensities of each frame and a reference one. Any frame in the sequence can be chosen as reference. The regularization term is based on theincompressibility of myocardial tissue. TDFFD was compared to pairwise 3D FFD and 3D+t FFD, bothon displacement and velocity elds, on a set of synthetic 3D US images with di erent noise levels. TDFFDshowed increased robustness to noise compared to these two state-of-the-art algorithms. TDFFD also proved to be more resistant to a reduced temporal resolution when decimating this synthetic sequence. Finally, this synthetic dataset was used to determine optimal settings of the TDFFD algorithm. Subsequently, TDFFDwas applied to a database of cardiac 3D US images of the left ventricle acquired from 9 healthy volunteers and 13 patients treated by Cardiac Resynchronization Therapy (CRT). On healthy cases, uniform strain patterns were observed over all myocardial segments, as physiologically expected. On all CRT patients, theimprovement in synchrony of regional longitudinal strain correlated with CRT clinical outcome as quanti ed by the reduction of end-systolic left ventricular volume at follow-up (6 and 12 months), showing the potential of the proposed algorithm for the assessment of CRT.
Resumo:
Purpose: The objective of this study is to investigate the feasibility of detecting and quantifying 3D cerebrovascular wall motion from a single 3D rotational x-ray angiography (3DRA) acquisition within a clinically acceptable time and computing from the estimated motion field for the further biomechanical modeling of the cerebrovascular wall. Methods: The whole motion cycle of the cerebral vasculature is modeled using a 4D B-spline transformation, which is estimated from a 4D to 2D + t image registration framework. The registration is performed by optimizing a single similarity metric between the entire 2D + t measured projection sequence and the corresponding forward projections of the deformed volume at their exact time instants. The joint use of two acceleration strategies, together with their implementation on graphics processing units, is also proposed so as to reach computation times close to clinical requirements. For further characterizing vessel wall properties, an approximation of the wall thickness changes is obtained through a strain calculation. Results: Evaluation on in silico and in vitro pulsating phantom aneurysms demonstrated an accurate estimation of wall motion curves. In general, the error was below 10% of the maximum pulsation, even in the situation when substantial inhomogeneous intensity pattern was present. Experiments on in vivo data provided realistic aneurysm and vessel wall motion estimates, whereas in regions where motion was neither visible nor anatomically possible, no motion was detected. The use of the acceleration strategies enabled completing the estimation process for one entire cycle in 5-10 min without degrading the overall performance. The strain map extracted from our motion estimation provided a realistic deformation measure of the vessel wall. Conclusions: The authors' technique has demonstrated that it can provide accurate and robust 4D estimates of cerebrovascular wall motion within a clinically acceptable time, although it has to be applied to a larger patient population prior to possible wide application to routine endovascular procedures. In particular, for the first time, this feasibility study has shown that in vivo cerebrovascular motion can be obtained intraprocedurally from a 3DRA acquisition. Results have also shown the potential of performing strain analysis using this imaging modality, thus making possible for the future modeling of biomechanical properties of the vascular wall.
Resumo:
The quantification of wall motion in cerebral aneurysms is becoming important owing to its potential connection to rupture, and as a way to incorporate the effects of vascular compliance in computational fluid dynamics (CFD) simulations.Most of papers report values obtained with experimental phantoms, simulated images, or animal models, but the information for real patients is limited. In this paper, we have combined non-rigid registration (IR) with signal processing techniques to measure pulsation in real patients from high frame rate digital subtraction angiography (DSA). We have obtained physiological meaningful waveforms with amplitudes in therange 0mm-0.3mm for a population of 18 patients including ruptured and unruptured aneurysms. Statistically significant differences in pulsation were found according to the rupture status, in agreement with differences in biomechanical properties reported in the literature.
Resumo:
The problem of jointly estimating the number, the identities, and the data of active users in a time-varying multiuser environment was examined in a companion paper (IEEE Trans. Information Theory, vol. 53, no. 9, September 2007), at whose core was the use of the theory of finite random sets on countable spaces. Here we extend that theory to encompass the more general problem of estimating unknown continuous parameters of the active-user signals. This problem is solved here by applying the theory of random finite sets constructed on hybrid spaces. We doso deriving Bayesian recursions that describe the evolution withtime of a posteriori densities of the unknown parameters and data.Unlike in the above cited paper, wherein one could evaluate theexact multiuser set posterior density, here the continuous-parameter Bayesian recursions do not admit closed-form expressions. To circumvent this difficulty, we develop numerical approximationsfor the receivers that are based on Sequential Monte Carlo (SMC)methods (“particle filtering”). Simulation results, referring to acode-divisin multiple-access (CDMA) system, are presented toillustrate the theory.
Resumo:
Wireless “MIMO” systems, employing multiple transmit and receive antennas, promise a significant increase of channel capacity, while orthogonal frequency-division multiplexing (OFDM) is attracting a good deal of attention due to its robustness to multipath fading. Thus, the combination of both techniques is an attractive proposition for radio transmission. The goal of this paper is the description and analysis of a new and novel pilot-aided estimator of multipath block-fading channels. Typical models leading to estimation algorithms assume the number of multipath components and delays to be constant (and often known), while their amplitudes are allowed to vary with time. Our estimator is focused instead on the more realistic assumption that the number of channel taps is also unknown and varies with time following a known probabilistic model. The estimation problem arising from these assumptions is solved using Random-Set Theory (RST), whereby one regards the multipath-channel response as a single set-valued random entity.Within this framework, Bayesian recursive equations determine the evolution with time of the channel estimator. Due to the lack of a closed form for the solution of Bayesian equations, a (Rao–Blackwellized) particle filter (RBPF) implementation ofthe channel estimator is advocated. Since the resulting estimator exhibits a complexity which grows exponentially with the number of multipath components, a simplified version is also introduced. Simulation results describing the performance of our channel estimator demonstrate its effectiveness.
Resumo:
In this paper, we introduce a pilot-aided multipath channel estimator for Multiple-Input Multiple-Output (MIMO) Orthogonal Frequency Division Multiplexing (OFDM) systems. Typical estimation algorithms assume the number of multipath components and delays to be known and constant, while theiramplitudes may vary in time. In this work, we focus on the more realistic assumption that also the number of channel taps is unknown and time-varying. The estimation problem arising from this assumption is solved using Random Set Theory (RST), which is a probability theory of finite sets. Due to the lack of a closed form of the optimal filter, a Rao-Blackwellized Particle Filter (RBPF) implementation of the channel estimator is derived. Simulation results demonstrate the estimator effectiveness.
Resumo:
Individuals' life chances in the future will very much depend on how we invest in our children now. An optimal human capital model would combine a high mean with minimal variance of skills. It is well-established that early childhood learning is key to adult success. The impact of social origins on child outcomes remains strong, and the new role of women poses additional challenges to our conventional nurturing approach to child development. This paper focuses on skill development in the early years, examining how we might best combine family inputs and public policy to invest optimally in our future human capital. I emphasize three issues: one, the uneven capacity of parents to invest in children; two, the impact of mothers' employment on child outcomes; and three, the potential benefits of early pre-school programmes. I conclude that mothers' intra-family bargaining power is decisive for family investments and that universal child care is key if our goal is to arrive at a strong mean with minimal variance.
Resumo:
The objective of this study was to verify if replacing the Injury Severity Score (ISS) by the New Injury Severity Score (NISS) in the original Trauma and Injury Severity Score (TRISS) form would improve the survival rate estimation. This retrospective study was performed in a level I trauma center during one year. ROC curve was used to identify the best indicator (TRISS or NTRISS) for survival probability prediction. Participants were 533 victims, with a mean age of 38±16 years. There was predominance of motor vehicle accidents (61.9%). External injuries were more frequent (63.0%), followed by head/neck injuries (55.5%). Survival rate was 76.9%. There is predominance of ISS scores ranging from 9-15 (40.0%), and NISS scores ranging from 16-24 (25.5%). Survival probability equal to or greater than 75.0% was obtained for 83.4% of the victims according to TRISS, and for 78.4% according to NTRISS. The new version (NTRISS) is better than TRISS for survival prediction in trauma patients.