988 resultados para marine sediment
Resumo:
Within the Russian-German research project on "Siberian River Run-off (SIRRO)" devoted to the freshwater discharge and its influence on biological, geochemical, and geological processes in the Kara Sea, sedimentological and organic-geochemical investigations were carried-out on two well-dated sediment cores from the Yenisei Estuary area. The main goal of this study was to quantify the terrigenous organic carbon accumulation based on biomarker and bulk accumulation rate data, and its relationship to Yenisei river discharge and climate change through Holocene times. The biomarker data at both cores clearly indicate the predominance of terrigenous organic matter, reaching 70 to 100% and 50 to 80% of the total organic carbon within and directly north of the estuary, respectively. During the last about 9 Cal. kyrs. BP represented in the studied sediment section, siliciclastic sediment and (terrigenous) organic carbon input was strongly influenced by postglacial sea-level rise and climate-related changes in river discharge. The mid-Holocene Climatic Optimum is documented by maximum river discharge between 8.2 and 7.3 Cal. kyrs. BP. During the last 2000 years river discharge probably became reduced, and accumulation of both terrigenous and marine organic carbon increased due to increased coagulation of fine-grained material.
Resumo:
Stable isotope analyses of marine bivalve growth increment samples have been used to estimate early Oligocene (29.4 - 31.2) Ma and early Miocene (24.0 Ma) seafloor palaeotemperature from the southwestern continental margin of the Ross Sea. Measured d18O values average +2.5 ? in the early Miocene and range between +1.26 to +3.24 ? in the early Oligocene. The results show that palaeoceanographic conditions in McMurdo Sound during the mid-Cenozoic were significantly different from those of today. The minimum estimated spring through late summer seasonal temperature range was 3°C during the early Miocene and between 1 and 5°C during the early Oligocene. This compares to the equivalent modern day range of <0.5°C within the sound. Absolute seawater temperatures at <100 m depth were of the order of 5 to 7°C during both time slices, compared to modern day values of -1.4 to - 1.9°C in the same area. The results are in broad agreement with early Oligocene Mg/Ca temperature estimates from deep Atlantic foraminifera as well as estimates from local terrestrial palynology and palaeobotany.
Resumo:
The site for CRP-2, 14 km east of Cape Roberts (77.006°S; 163.719°E), was selected to overlap the early Miocene strata cored in nearby CRP-1, and to sample deeper into the east-dipping strata near the western margin ofe he Victoria Land Basin to investigate Palaeogene climatic and tectonic history. CRP-2 was cored from 5 to 57 mbsf (metres below the sea floor) (core recovery 91 %), with a deviation resulting in CRP-2A being cored at the same site. CRP-2A reached down to 624mbsf (recovery 95%), and to strata with an age of c. 33-35 Ma. Drilling took place from 16 October to 25 November 1998, on 2.0-2.2 m of sea ice and through 178 m of water. Core fractures and other physical properties, such as sonic velocity, density and magnetic susceptibility, were measured throughout the core. Down-hole logs for these and other properties were run from 63 to 167 mbsf and subsequently from 200 to 623 mbsf, although density and velocity data could be obtained only to 440 mbsf because of hole collapse. Sonic velocity averages c. 2.0 km S-1 for the upper part of the hole, but there is an sharp increase to c. 3.0 km s-1 and also a slight angular unconformity, at 306 mbsf, corresponding most likely to the early/late Oligocene boundary (c. 28-30 Ma). Velocity then increases irregularly to around 3.6 km s-1 at the bottom of the hole, which is estimated to lie 120 m above the V4/V5 boundary. The higher velocities below 306 mbsf probably reflect more extensive carbonate and common pyrite cementation, in patches, nodules, bedding-parallel masses and as vein infills. Dip of the strata also increases down-hole from 3° in the upper 300 in to over 10° at the bottom. Temperature gradient is 21° k-1. Over 2 000 fractures were logged through the hole. Borehole televiewer imagery was obtained for the interval from 200 to 440 mbsf to orient the fractures for stress field analysis. Lithostratigraphical descriptions on a scale of 1:20 are presented for the full length of the core, along with core box images, as a 200 page supplement to this issue. The hole initially passed through a layer of muddy gravel to 5.5 mbsf (Lithological Sub-Unit or LSU 1.1), and then into a Quaternary diatom-bearing clast-rich diamicton to 21 mbsf (LSU 2. l), with an interval of alternating compact diamicton and loose sand, and containing a rich Pliocene foraminiferal fauna, to 27 mbsf (LSU 2.2). The unit beneath this (LSU 3.1) has similar physical properties (sonic velocity, porosity, magnetic susceptibility) and includes diamictites of similar character to those of LSU 2.1 and 2.2, but an early Miocene (c. 19 Ma) diatom assemblage at 28 mbsf (top of LSU 3.1) shows that this sub-unit is part of the older section. The strata beneath 27 mbsf, primary target for the project, extend from early Miocene to perhaps latest Eocene age, and are largely cyclic glacimarine nearshore to offshore sediments. They are described as 41 lithological sub-units and interpreted in terms of 12 recurrent lithofacies. These are 1) mudstone, 2) inter-stratified mudstone and sandstone, 3) muddy very fine to coarse sandstone, 4) well-sorted stratified fine sandstone, 5) moderately to well-sorted, medium-grained sandstone, 6) stratified diamictite, 7) massive diamictite, 8) rhythmically inter-stratified sandstone and mudstone, 9) clast-supported conglomerate, 10) matrix-supported conglomerate, 11) mudstone breccia and 12) volcaniclastic sediment. Sequence stratigraphical analysis has identified 22 unconformity-bounded depositional sequences in pre- Pliocene strata. They typically comprise a four-part architecture involving, in ascending order, 1) a sharp-based coarse-grained unit (Facies 6,7,9 or 10), 2) a fining-upward succession of sandstones (Facies 3 and 4), 3) a mudstone interval (Facies l), in some cases coarsening upward to muddy sandstones (Facies 3), and 4) a sharp-based sandstone dominated succession (mainly Facies 4). The cyclicity recorded by the strata is interpreted in terms of a glacier ice margin retreating and advancing from land to the west, and of rises and falls in sea level. Analysis of sequence periodicity awaits afirmer chronology. However, apreliminary spectral analysis of magnetic susceptibility for a deepwater mudstone within one of the sequences (from 339 to 347 mbsf) reveals ratios between hierarchical levels that are similar to those of the three Milankovitch orbital forcing periodicities. The strata contain a wide range of fossils, the most abundant being marine diatoms. These commonly form up to 5% of the sediment, though in places the core is barren (notably between 300 and 412 mbsf). Fifty samples out of 250 reviewed were studied in detail. The assemblages define ten biostratigraphical zones, some of them based on local or as yet undescribed forms. The assemblages are neritic, and largely planktonic, suggesting that the sea floor was mostly below the photic zone throughout deposition of the corcd sequence. Calcareous nannofossils, representing incursions of ocean surface waters, are much less common (72 out of 183 samples examined) and restricted to mudstone intervals a few tens of metres thick, but are important for dating. Foraminifera are also sparse (73 out of 135 samples) and represented only by calcareous benthic species. Changing assemblages indicate a shift from inshore environments in the early Oligocenc to outer shelf in the late Oligocenc, returning to inshore in the early Miocene. Marine palynomorplis yielded large numbers of well-preserved forms from most of the 116 samples examined. The new in situ assemblagc found last year in CRP-1 is extended down into the late Oligocene and a further new assemblage is found in the early Oligoccnc. Many taxa are new, and cannot us yet contribute to an improved understanding of chronology or ecology. Marine invertebrate macrofossils, mostly molluscs and serpulid tubes, are scattered throughout the core. Preservation is good in mudstones but poor in other lithologies. Climate on land is reflected in the content of terrestrial palynomorphs, which are extremely scarce down to c. 300 mbsf. Some forms are reworked, and others represent a low growing sparse tundra with at least one species of Nothofagus. Beneath this level, a significantly greater diversity and abundance suggests a milder climate and a low diversity woody vegetation in the early Oligocene, but still far short of the richness found in known Eocene strata of the region. Sedimentary facies in the oldest strata also suggest a milder climate in the oldest strata cored, with indications of substantial glacial melt-water discharges, but are typical of a coldcr climate in late Oligocene and early Miocene times. Clast analyses from diamictites reveal weak to random fabrics, suggesting either lack of ice-contact deposition or post-depositional modification, but periods when ice grounded at the drill site are inferred from thin zones of in-situ brecciated rock and soft-sediment folding. These are more common above c. 300 mbsf, perhaps reflecting more extensive glacial advances during deposition of those strata. Erosion of the adjacent Transantarctic Mountains through Jurassic basalt and dolerite-intruded Beacon strata into basement rocks beneath is recorded by petrographical studies of clast and sand grain assemblages. Core below 310 mbsf contains a dominance of fine-grained Jurassic dolerite and basalt fragments along with Beacon-derived coal debris and rounded quartz grains, whereas the strata above this level have a much higher proportion of basement derived granitoids, implying that the large areas of the adjacent mountains had been eroded to basement by the end of the early Oligocene. There is little indication of rift-related volcanism below 310 mbsf. Above this, however, basaltic and trachytic tephras are common, especially from 280 to 200 mbsf, from 150 to 46 mbsf, and in Pliocene LSU 2.2 from 21 to 27 mbsf. The largest volcanic eruptions generated layers of coarse (up to 1 cm) trachytic pumice lapilli between 97 and 114 mbsf. The thickest of these (1.2 m at 112 mbsf) may have produced an eruptive column extending tens of km into the stratosphere. A source within a few tens of km of the drill site is considered most likely. Present age estimates for the pre-Pliocene sequence are based mainly on biostratigraphy (using mainly marine diatoms and to a lesser extent calcareous nannofossils), with the age of the tephra from 112 to 114 mbsf (21.44k0.05 Ma from 84 crystals by Ar-Ar) as a key reference point. Although there are varied and well-preserved microfossil assemblages through most of the sequence (notably of diatoms and marine palynomorphs), they comprise largely taxa either known only locally or as yet undescribed. In addition, sequence stratigraphical analysis and features in the core itself indicate numerous disconformities. The present estimate from diatom assemblages is that the interval from 27 to 130 mbsf is early Miocene in age (c. 19 to 23.5 Ma), consistent with the Ar-Ar age from 112 to 114 mbsf. Diatom assemblages also indicate that the late Oligocene epoch extends from c. 130 to 307 mbsf, which is supported by late Oligocene nannofossils from 130 to 185 mbsf. Strata from 307 to 412 mbsf have no age-diagnostic assemblages, but below this early Oligocene diatoms and nannofossils have been recovered. A nannoflora at the bottom of the hole is consistent with an earliest Oligocene or latest Eocene age. Magnetostratigraphical studies based on about 1000 samples, 700 of which have so far undergone demagnetisation treatment, have provided a polarity stratigraphy of 12 pre-Pliocene magnetozones. Samples above 270 mbsf are of consistently high quality. Below this, magnetic behaviour is more variable. A preliminary age-depth plot using the Magnetic Polarity Time Scale (MPTS) and constrained by biostratigraphical data suggests that episodes of relatively rapid sedimentation took place at CRP-2 during Oligocene times (c. 100 m/My), but that more than half of the record was lost in a few major and many minor disconformities. Age estimates from Sr isotopes in shell debris and further tephra dating are expected to lead to a better comparison with the MPTS. CRP-2/2A has recorded a history of subsidence of the Victoria Land Basin margin that is similar to that found in CIROS-170 km to the south, reflecting stability in both basin and the adjacent mountains in late Cenozoic times, but with slow net accumulation in the middle Cenozoic. The climatic indicators from both drill holes show a similar correspondence, indicating polar conditions for the Quaternary but with sub-polar conditions in the early Miocene-late Oligocene and indications of warmer conditions still in the early Oligocene. Correlation between the CRP-2A core and seismic records shows that seismic units V3 and V4, both widespread in the Victoria Land Basin, represent a period of fluctuating ice margins and glacimarine sedimentation. The next drill hole, CRP-3, is expected to core deep into V5 and extend this record of climate and tectonics still further back in time.
Resumo:
Drilling was undertaken at five sites (739-743) on ODP Leg 119 on a transect across the continental shelf of Prydz Bay, East Antarctica, to elucidate the long-term glacial history of the area and to examine the importance of the area with respect to the development of the East Antarctic ice sheet as a whole. In addition to providing a record of glaciation spanning 36 m.y. or more, Leg 119 has provided information concerning the development of a continental margin under the prolonged influence of a major ice sheet. This has allowed the development of a sedimentary model that may be applicable not only to other parts of the Antarctic continental margin, but also to northern high-latitude continental shelves. The cored glacial sedimentary record in Prydz Bay consists of three major sequences, dominated by diamictite: 1. An upper flat-lying sequence that ranges in thickness from a few meters in inner and western Prydz Bay to nearly 250 m in the outer or eastern parts of the bay. The uppermost few meters consist of Holocene diatom ooze and diatomaceous mud with a minor ice-rafted component overlying diamicton and diamictite of late Miocene to Quaternary age. The diamictite is mainly massive, but stratified varieties and minor mudstone and diatomite also occur. 2. An upper prograding sequence cored at Sites 739 and 743, unconformly below the flat-lying sequence. This consists of a relatively steep (4° inclination) prograding wedge with a number of discrete sedimentary packages. At Sites 739 and 743 the sequence is dominated by massive and stratified diamictite, some of which shows evidence of slumping and minor debris flowage. 3. A lower, more gently inclined, prograding sequence lies unconformably below the flat-lying sequence at Site 742 and the upper prograding sequence at Site 739. This extends to the base of both sites, to 316 and 487 mbsf, respectively. It is dominated by massive, relatively clast-poor diamictite which is kaolinite-rich, light in color, and contains sporadic carbonate-cemented layers. The lower part of Site 742 includes well-stratified diamictites and very poorly sorted mudstones. The base of this site has indications of large-scale soft-sediment deformation and probably represents proximity to the base of the glacial sequence. Facies analysis of the Prydz Bay glacial sequence indicates a range of depositional environments. Massive diamictite is interpreted largely as waterlain till, deposited close to the grounding line of a floating glacier margin, although basal till and debris flow facies are also present. Weakly stratified diamictite is interpreted as having formed close to or under the floating ice margin and influenced by the input of marine diatomaceous sediment (proximal glaciomarine setting). Well-stratified diamictite has a stronger marine input, being more diatom-rich, and probably represents a proximal-distal glaciomarine sediment with the glaciogenic component being supplied by icebergs. Other facies include a variety of mudstones and diatom-rich sediments of marine origin, in which an ice-rafted component is still significant. None of the recovered sediments are devoid of a glacial influence. The overall depositional setting of the prograding sequence is one in which the grounded ice margin is situated close to the shelf edge. Progradation was achieved primarily by deposition of waterlain till. The flat-lying sequence illustrates a complex sequence of advances and retreats across the outer part of the shelf, with intermittent phases of ice loading and erosion. The glacial chronology is based largely on diatom stratigraphy, which has limited resolution. It appears that ice reached the paleoshelf break by earliest Oligocene, suggesting full-scale development of the East Antarctic ice sheet by that time. The ice sheet probably dominated the continental margin for much of Oligocene to middle Miocene time. Retreat, but not total withdrawal of the ice sheet, took place in late Miocene to mid-Pliocene time. The late Pliocene to Pleistocene was characterized by further advances across, and progradation of, the continental shelf. Holocene time has been characterized by reduced glacial conditions and a limited influence of glacial processes on sedimentation.
Resumo:
We present alkenone-derived Sea Surface Temperature (SST) records from three marine cores collected within the southern Benguela Upwelling System (BUS) spanning the last 3 ka. The SST evolution over the last 3 millennia is marked by aperiodic millennial-scale oscillations that broadly correspond to climatic anomalies identified over the North Atlantic region. The BUS SST data further suggest cooling and warming trends opposite to the temperature evolution in the Moroccan upwelling region and in Antarctica. In contrast, the last decades are marked by a cooling of unprecedented magnitude in both the Benguela and Moroccan upwelling systems, which is not observed in the Antarctic record. These contrasted responses in Atlantic upwelling systems triggered by natural and anthropogenic forcings shed light on how different climatic mechanisms are mediated by ocean-atmosphere interactions and transmitted to the geological records of past and present climate changes.
Resumo:
Membrane fatty acids were extracted from a sediment core above marine gas hydrates at Hydrate Ridge, NE Pacific. Anaerobic sediments from this environment are characterized by high sulfate reduction rates driven by the anaerobic oxidation of methane (AOM). The assimilation of methane carbon into bacterial biomass is indicated by carbon isotope values of specific fatty acids as low as -103 per mill. Specific fatty acids released from bacterial membranes include C 16:1 omega 5c , C 17:1 omega 6c , and cyC 17:0 omega 5,6 , all of which have been fully characterized by mass spectrometry. These unusual fatty acids continuously display the lowest d13 C values in all sediment horizons and two of them are detected in high abundance (i.e., C 16:1 omega 5c and cyC 17:0 omega 5,6 ). Combined with microscopic examination by fluorescence in situ hybridization specifically targeting sulfate-reducing bacteria (SRB) of the Desulfosarcina/Desulfococcus group, which are present in the aggregates of AOM consortia in extremely high numbers, these specific fatty acids appear to provide a phenotypic fingerprint indicative for SRB of this group. Correlating depth profiles of specific fatty acid content and aggregate number in combination with pore water sulfate data provide further evidence of this finding. Using mass balance calculations we present a cell-specific fatty acid pattern most likely displaying a very close resemblance to the still uncultured Desulfosarcina/Desulfococcus species involved in AOM.