969 resultados para malformation combinations


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reprocessing of Light Water Reactor (LWR) spent fuel to recover plutonium or transuranics for use in Sodium cooled Fast Reactors (SFRs) is a distant prospect in the U.S.A. This has motivated our evaluation of potentially cost-effective operation of uranium startup fast reactors (USFRs) in a once-through mode. This review goes beyond findings reported earlier based on a UC fueled MgO reflected SFR to describe a broader parametric study of options. Cores were evaluated for a variety of fuel/coolant/reflector combinations: UC/UZr/UO 2/UN;Na/Pb; MgO/SS/Zr. The challenge is achieving high burnup while minimizing enrichment and respecting both cladding fluence/dpa and reactivity lifetime limits. These parametric studies show that while UC fuel is still the leading contender, UO 2 fuel and ZrH 1.7 moderated metallic fuel are also attractive if UC proves to be otherwise inadequate. Overall, these findings support the conclusion that a competitive fuel cycle cost and uranium utilization compared to LWRs is possible for SFRs operated on a once-through uranium fueled fuel cycle. In addition, eventual transition to TRU recycle mode is studied, as is a small test reactor to demonstrate key features.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is well known that the power absorbed by a linear oscillator when excited by white noise base acceleration depends only on the mass of the oscillator and the spectral density of the base motion. This places an upper bound on the energy that can be harvested from a linear oscillator under broadband excitation, regardless of the stiffness of the system or the damping factor. It is shown here that the same result applies to any multi-degree-of-freedom nonlinear system that is subjected to white noise base acceleration: for a given spectral density of base motion the total power absorbed is proportional to the total mass of the system. The only restriction to this result is that the internal forces are assumed to be a function of the instantaneous value of the state vector. The result is derived analytically by several different approaches, and numerical results are presented for an example two-degree-of-freedom-system with various combinations of linear and nonlinear damping and stiffness. © 2013 The Author.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Laminated glass units are traditionally used to provide a degree of post-fracture strength, but the residual strength is often limited to relatively low levels suffi cient for holding the glass fragments together for a predetermined amount of time. It is possible to achieve a higher level of residual strength, but this requires specific boundary conditions and/or opaque reinforcing materials. This paper describes the experimental investigations on laminated glass units that can provide a signifi cant degree of post-fracture resistance, without the need of boundary restraints or opaque reinforcing materials. The glass units are composed entirely of combinations of conventional transparent interlayers and commercially available glass (annealed, heat treated and chemically strengthened). The paper also describes an empirical energy based interpretation of the mechanical response of the laminated units.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Offshore wind turbines impose unique combinations of loads on their foundations. They impose large lateral loads in relation to vertical loading which must be resisted, but are also subject to approximately a million cycles of loading through their design life. As the performance of these systems is dominated by their dynamic response, the stiffness of the foundations becomes critical in design. Conventional design codes which are conservative by virtue of predicting a lower stiffness than might be observed in practice may not be conservative for these problems. By utilizing centrifuge modeling the behaviour of monopile foundations in both sands and clays under cyclic loading can be investigated in order to predict the dynamic behaviour of these systems. © 2010 Taylor & Francis Group, London.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to examine the role of environmental factors affecting foliar morphology, we performed a case study of leaf morphological variation of Ranunculus natans found in the arid zone of northwest China. We found that foliar phenotypic variation differed significantly between populations. We described substantial positive correlations between altitude and leaf area (LA) as well as leaf perimeter (LP), and also between longitude and number of teeth, along with dissection index (DI). The pH, conductivity, and salinity of the environment caused a significant decrease in both LA and LP. Ranked in terms of their impacts on leaf morphology, the six selected factors were: altitude > pH > conductivity > salinity > longitude > latitude. We found that foliar morphological variations are functional responses to water-quantity factors (e.g., altitude and longitude at regional scales) and water-availability relation factors (e.g., pH, conductivity, and salinity at local scales), rather than to temperature-relation factors (latitude). Therefore, altitude and longitude, along with pH, conductivity, and salinity, are the main factors that significantly influence foliar morphology in the arid zone of China. We found that main factors played major roles in plant phenotypic plasticity in a complex ecosystem, although different combinations and interactions of environmental and geographical factors in each local environment may obscure the general trends in trait changes along environmental gradients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hexabromocyclododecane (HBCD) is widely used as a brominated flame retardant, and has been detected in the aquatic environment, wild animals, and humans. However, details of the environmental health risk of HBCD are not well known. In this study, zebrafish embryos were used to assess the developmental toxicity of the chemical. Four-hour post-fertilization (hpf) zebrafish embryos were exposed to various concentrations of HBCD (0, 0.05, 0.1, 0.5, and 1.0 mg L-1) until 96 h. Exposure to 0.1, 0.5, and 1.0 mg L-1 HBCD significantly increased the malformation rate and reduced survival in the 0.5 and 1.0 mg L-1 HBCD exposure groups. Acridine orange (AO) staining showed that HBCD exposure resulted in cell apoptosis. Reactive oxygen species (ROS) was significantly induced at exposures of 0.1, 0.5, and 1.0 mg L-1 HBCD. To test the apoptotic pathway, several genes related to cell apoptosis, such as p53, Puma, Apaf-1, caspase-9, and caspase-3, were examined using real-time PCR. The expression patterns of these genes were up-regulated to some extent. Two anti-apoptotic genes, Mdm2 (antagonist of p53) and Bcl-2 (inhibitor of Bax), were down-regulated, and the activity of capspase-9 and caspase-3 was significantly increased. The overall results demonstrate that waterborne HBCD is able to produce oxidative stress and induce apoptosis through the involvement of caspases in zebrafish embryos. The results also indicate that zebrafish embryos can serve as a reliable model for the developmental toxicity of HBCD. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We determined the genetic diversity of geographic populations from three spawning grounds (Nyang River, Lhasa River, Shetongmon Reach of Yarlung Zangbo River) of Glyptosternum maculatum with amplified fragment length polymorphism (AFLP) markers. Five primer combinations detected 332 products, 51 of them (15.4%) were polymorphic in at least one population. The Shetongmon population was found to be the richest in genetic diversity as was indicated by the percentage of polymorphic loci and heterozygosity, followed by the Nyang population and the Lhasa population. The pair-wise genetic distance between populations were all very close, ranging from 0.0015 to 0.0042 with an average of 0.0024. The genetic distance was not proportional to the geographic distance. The analysis of molecular variance demonstrated that all variation occurred within populations. The average estimated fixation index (F (st)) of three populations across all polymorphic loci was -0.0184, indicating the absence of genetic differences among the three sampled populations. The differentiation among populations was not significant, and population structure was weak. Our observations will help identify the genetic relationship among populations as the first approach to understand the genetic diversity of Glyptosternum maculatum.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Perfluorooctane sulfonate (PFOS) is widely distributed and persistent in the environment and wildlife. The main aim of this study was to investigate the impact of long-term exposure to low concentrations of PFOS in zebrafish. Zebrafish fry (F-0, 14d post-fertilization, dpf) were exposed via the water for 70d to 0 (control), 10, 50 and 250 mu g L-1 PFOS, followed by a further 30d to assess recovery in clean water. The effects on survival and growth parameters and liver histopathology were assessed. Although growth suppression (weight and length) was observed in fish treated with high concentrations PFOS during the exposure period, no mortality was observed throughout the 70d experiment. Embryos and larvae (F-1) derived from maternal exposure suffered malformation and mortality. Exposure to 50 and 250 mu g L-1 PFOS could inhibit the growth of the gonads (GSI) in the female zebrafish. Histopathological alterations, primary with lipid droplets accumulation, were most prominently seen in the liver of males and the changes were not reversible, even after the fish were allowed to recover for 30d in clean water. The triiodothyronine (T-3)) levels were not significantly changed in any of the exposure groups. Hepatic vitellogenin (VTG) gene expression was significantly up-regulated in both male and female zebrafish, but the sex ratio was not altered. The overall results suggested that lower concentrations of PFOS in maternal exposure could result in offspring deformation and mortality. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The crosstalk between naive nucleus and maternal factors deposited in egg cytoplasm before zygotic genome activation is crucial for early development. In this study, we utilized two laboratory fishes, zebrafish (Danio rerio) and Chinese rare minnow and Chinese rare minnow (Gobiocypris rarus), to obtain mutual crossbred embroys and examine the interaction between nucleus and egg cytoplasm from different species. Although these two types of crossbred embryos originated from common nuclei, various developmental capacities were gained due to different origins of the egg cytoplasm. Using cDNA amplified fragment length polymorphism (cDNA-AFLP), We Compared transcript profiles between the mutual crossbred embryos at two developmental stages (50%- and 90%-epiholy). Three thousand cDNA fragments were generated in four cDNA pools with 64 primer combinations. All differently displayed transcript-derived fragments (TDFs) were screened by (lot blot hybridization, and the selected sequences were further analyzed by semi-quantitative RT-PCR and quantitative real-time RT-PCR. Compared with ZR embryos, 12 genes were up-regulated and 12 were down-regulated in RZ embryos. The gene fragments were sequenced and subjected to BLASTN analysis. The sequences encoded various proteins which functioned at various levels of proliferation, growth, and development. One gene (ZR6), dramatically down-regulated in RZ embryos, was chosen for loss-of-function study; the knockdown of ZR6 gave rise to the phenotype resembling that of RZ embryos. (c) 2008 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A L9 orthogonal array design involving 3 factors (C6H12O6, KNO3 and NaH2PO4) and 3 levels for each (C6H12O6: 0.2, 0.4 or 0.8 g/L; KNO3: 0.4, 0.8 or 1.6 g/L, NaH2PO4: 0.05, 0.1 or 0.2 g/L), was used to study the effects of nutrients on dehydrogenase activity and polysaccharide content of substrate biofilms in the integrated vertical-flow constructed wetland (IVCW). Results showed that C6H12O6 and KNO3 were the main factors for dehydrogenase activity and polysaccharide content of biofilms, respectively. The combinations of three nutrients at different concentrations had different effects on dehydrogenase activity and polysaccharide content of biofilms. The optimal combination for dehydrogenase activity was obtained by locating the concentrations Of C6H12O6, KNO3 and NaH2PO4 at 0.2, 0.8 and 0.05 g, and the optimal combination for polysaccharide content was obtained by locating the concentrations Of C6H12O6, KNO3 and NaH2PO4 at 0.2, 0.4 and 0.2 g/L, respectively. The corresponding maximum activity and polysaccharide content were 5.40 mu g TF/g substrate/12 h and 3454.6 mu g/g substrate, respectively. These results would provide the laboratory foundation for optimizing the purification function of the wetland systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Perfluorooetanesulfonate (PFOS) is a persistent organic pollutant, the potential toxicity of which is causing great concern. In the present study, we employed zebrafish embryos to investigate the developmental toxicity of this compound. Four-hour post-fertilization (hpf) zebrafish embryos were exposed to 0.1, 0.5, 1, 3 and 5 mg/L PFOS. Hatching was delayed and hatching rates as well as larval survivorship, were significantly reduced after the embryos were exposed to 1, 3 and 5 mg/L PFOS until 132 hpf. The fry displayed gross developmental malformations, including epiboly deformities, hypopigmentation, yolk sac edema, tail and heart malformations and spinal curvature upon exposure to PFOS concentrations of I mg/L or greater. Growth (body length) was significantly reduced in the 3 and 5 mg/L PFOS-treated groups. To test whether developmental malformation was mediated via apoptosis, flow cytometry analysis of DNA content, acridine orange staining and TUNEL assay was used. These techniques indicated that more apoptotic cells were present in the PFOS-treated embryos than in the control embryos. Certain genes related to cell apoptosis, p53 and Bax, were both significantly up-regulated upon exposure to all the concentrations tested. In addition, we investigated the effects of PFOS on marker genes related to early thyroid development (hhex and pax8) and genes regulating the balance of androgens and estrogens (cyp19a and cyp19b). For thyroid development, the expression of hhex was significantly up-regulated at all concentrations tested, whereas pax8 expression was significantly up-regulated only upon exposure to lower concentrations of PFOS (0.1, 0.5, 1 mg/L). The expression of cyp19a and of cyp19b was significantly down-regulated at all exposure concentrations. The overall results indicated that zebrafish embryos constitute a reliable model for testing the developmental toxicity of PFOS, and the gene expression patterns in the embryos were able to reveal some potential mechanisms of developmental toxicity. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The concept of co-catalytic layer structures for controlled laser-induced chemical vapor deposition of carbon nanotubes is established, in which a thin Ta support layer chemically aids the initial Fe catalyst reduction. This enables a significant reduction in laser power, preventing detrimental positive optical feedback and allowing improved growth control. Systematic study of experimental parameters combined with simple thermostatic modeling establishes general guidelines for the effective design of such catalyst/absorption layer combinations. Local growth of vertically aligned carbon nanotube forests directly on flexible polyimide substrates is demonstrated, opening up new routes for nanodevice design and fabrication.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Natural levels of solar UVR were shown to break and alter the spiral structure of Arthrospira (Spirulina) platensis (Nordst.) Gomont during winter. However, this phenomenon was not observed during summer at temperatures of similar to 30 degrees C. Since little has been documented on the interactive effects of solar UV radiation (UVR; 280-400 nm) and temperature on cyanobacteria, the morphology, photosynthesis, and DNA damage of A. platensis were examined using two radiation treatments (PAR [400-700 nm] and PAB [PAR + UV-A + UV-B: 280-700]), three temperatures (15, 22, and 30 degrees C), and three biomass concentrations (100, 160, and 240 mg dwt [dry weight] . L-1). UVR caused a breakage of the spiral structure at 15 degrees C and 22 degrees C, but not at 30 degrees C. High PAR levels also induced a significant breakage at 15 degrees C and 22 degrees C, but only at low biomass densities, and to lesser extent when compared with the PAB treatment. A. platensis was able to alter its spiral structure by increasing helix tightness at the highest temperature tested. The photochemical efficiency was depressed to undetectable levels at 15 degrees C but was relatively high at 30 degrees C even under the treatment with UVR in 8 h. At 30 degrees C, UVR led to 93%-97% less DNA damage when compared with 15 degrees C after 8 h of exposure. UV-absorbing compounds were determined as negligible at all light and temperature combinations. The possible mechanisms for the temperature-dependent effects of UVR on this organism are discussed in this paper.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A laboratory toxic experiment was conducted to examine dose-dependent effects of extracted microcystins (MCs) on embryonic development, larval growth and histopathological changes of southern catfish (Silurus meridionalis). Fertilized eggs were incubated in solutions with four concentrations of MCs (0, 1, 10, 100 mu g MC-LReq l(-1)). Higher MCs retarded egg development (2-10 h delays) and larval growth, reduced hatching rate (up to 45%), and caused high malformation rate (up to 15%) and hepatocytes damage (characterized by disorganization of cell structure and a loss of adherence between hepatocytes, cellular degeneration with vacuolar hepatocytes and marginal nuclei, even hepatocellular necrosis). A 10 mu g MC-LReql(-1) is close to a high concentration in natural cyanobacterial blooms, suggesting a possible existence of such toxic effects in eutrophic waters. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Micronutrients play a very important role in biological processes for wastewater treatment. Many industrial wastewaters lack in nutrients (macronutrients and micronutrients) required for microbial growth, and this is one of the main problems at many activated sludge plants treating industrial wastewater. The microbial community structure is one of the important factors controlling the pollutant-degrading capacity of biological wastewater treatment system. In this study, the concentrations of micronutrients of the textile wastewater discharged from a textile plant were determined, and the effects of micronutrients on treatment efficiency and microorganism community structure of the biological treatment system were studied. The results showed that the optimal concentrations of magnesium, molybdenum, zinc, thiamine and niacin in the textile wastewater were 5.0, 2.0, 1.0, 1.0 and 1.0mg/L, respectively. The COD removal rates when magnesium, molybdenum, zinc, thiamine and niacin were added individually to the wastewater in their optimal concentrations were 1.8, 1.4, 1.3, 1.6 and 2.2 times of that of the control, respectively. The improving effects of combinations of zinc and thiamine, zinc and niacin, thiamine and niacin were better than single micronutrient. The diversity of quinones (DQ) changed significantly after the micronutrient was added into the wastewater treatment system. This indicated that there was probably a feasibility of optimizing the biological treatment performances and microorganism community structure of textile wastewater treatment system through micronutrient supplement.