925 resultados para loss, PBEE, PEER method, earthquake engineering


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Finite element analysis (FEA) of nonlinear problems in solid mechanics is a time consuming process, but it can deal rigorously with the problems of both geometric, contact and material nonlinearity that occur in roll forming. The simulation time limits the application of nonlinear FEA to these problems in industrial practice, so that most applications of nonlinear FEA are in theoretical studies and engineering consulting or troubleshooting. Instead, quick methods based on a global assumption of the deformed shape have been used by the roll-forming industry. These approaches are of limited accuracy. This paper proposes a new form-finding method - a relaxation method to solve the nonlinear problem of predicting the deformed shape due to plastic deformation in roll forming. This method involves applying a small perturbation to each discrete node in order to update the local displacement field, while minimizing plastic work. This is iteratively applied to update the positions of all nodes. As the method assumes a local displacement field, the strain and stress components at each node are calculated explicitly. Continued perturbation of nodes leads to optimisation of the displacement field. Another important feature of this paper is a new approach to consideration of strain history. For a stable and continuous process such as rolling and roll forming, the strain history of a point is represented spatially by the states at a row of nodes leading in the direction of rolling to the current one. Therefore the increment of the strain components and the work-increment of a point can be found without moving the object forward. Using this method we can find the solution for rolling or roll forming in just one step. This method is expected to be faster than commercial finite element packages by eliminating repeated solution of large sets of simultaneous equations and the need to update boundary conditions that represent the rolls.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a deregulated electricity market, optimizing dispatch capacity and transmission capacity are among the core concerns of market operators. Many market operators have capitalized on linear programming (LP) based methods to perform market dispatch operation in order to explore the computational efficiency of LP. In this paper, the search capability of genetic algorithms (GAs) is utilized to solve the market dispatch problem. The GA model is able to solve pool based capacity dispatch, while optimizing the interconnector transmission capacity. Case studies and corresponding analyses are performed to demonstrate the efficiency of the GA model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A deregulated electricity market is characterized with uncertainties, with both long and short terms. As one of the major long term planning issues, the transmission expansion planning (TEP) is aiming at implementing reliable and secure network support to the market participants. The TEP covers two major issues: technical assessment and financial evaluations. Traditionally, the net present value (NPV) method is the most accepted for financial evaluations, it is simple to conduct and easy to understand. Nevertheless, TEP in a deregulated market needs a more dynamic approach to incorporate a project's management flexibility, or the managerial ability to adapt in response to unpredictable market developments. The real options approach (ROA) is introduced here, which has clear advantage on counting the future course of actions that investors may take, with understandable results in monetary terms. In the case study, a Nordic test system has been testified and several scenarios are given for network expansion planning. Both the technical assessment and financial evaluation have been conducted in the case study.