969 resultados para loosely coupled networks
Resumo:
This paper presents the capability of the neural networks as a computational tool for solving constrained optimization problem, arising in routing algorithms for the present day communication networks. The application of neural networks in the optimum routing problem, in case of packet switched computer networks, where the goal is to minimize the average delays in the communication have been addressed. The effectiveness of neural network is shown by the results of simulation of a neural design to solve the shortest path problem. Simulation model of neural network is shown to be utilized in an optimum routing algorithm known as flow deviation algorithm. It is also shown that the model will enable the routing algorithm to be implemented in real time and also to be adaptive to changes in link costs and network topology. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Among the carbon allotropes, carbyne chains appear outstandingly accessible for sorption and very light. Hydrogen adsorption on calcium-decorated carbyne chain was studied using ab initio density functional calculations. The estimation of surface area of carbyne gives the value four times larger than that of graphene, which makes carbyne attractive as a storage scaffold medium. Furthermore, calculations show that a Ca-decorated carbyne can adsorb up to 6 H(2) molecules per Ca atom with a binding energy of similar to 0.2 eV, desirable for reversible storage, and the hydrogen storage capacity can exceed similar to 8 wt %. Unlike recently reported transition metal-decorated carbon nanostructures, which suffer from the metal clustering diminishing the storage capacity, the clustering of Ca atoms on carbyne is energetically unfavorable. Thermodynamics of adsorption of H(2) molecules on the Ca atom was also investigated using equilibrium grand partition function.
Resumo:
This paper compares and analyzes the performance of distributed cophasing techniques for uplink transmission over wireless sensor networks. We focus on a time-division duplexing approach, and exploit the channel reciprocity to reduce the channel feedback requirement. We consider periodic broadcast of known pilot symbols by the fusion center (FC), and maximum likelihood estimation of the channel by the sensor nodes for the subsequent uplink cophasing transmission. We assume carrier and phase synchronization across the participating nodes for analytical tractability. We study binary signaling over frequency-flat fading channels, and quantify the system performance such as the expected gains in the received signal-to-noise ratio (SNR) and the average probability of error at the FC, as a function of the number of sensor nodes and the pilot overhead. Our results show that a modest amount of accumulated pilot SNR is sufficient to realize a large fraction of the maximum possible beamforming gain. We also investigate the performance gains obtained by censoring transmission at the sensors based on the estimated channel state, and the benefits obtained by using maximum ratio transmission (MRT) and truncated channel inversion (TCI) at the sensors in addition to cophasing transmission. Simulation results corroborate the theoretical expressions and show the relative performance benefits offered by the various schemes.
Resumo:
The e�cient operation of single-source, single-sink wireless network is considered with the diversity-multiplexing gain tradeo� (DMT) as the measure of performance. Whereas in the case of a point-to-point MIMO channel the DMT is determined by the fading statistics, in the case of a network, the DMT is additionally, a function of the time schedule according to which the network is operated, as well as the protocol that dictates the mode of operation of the intermediate relays.In general, it is only possible at present, to provide upper bounds on the DMT of the network in terms of the DMT of the MIMO channel appearing across cuts in the network. This paper presents a tutorial overview on the DMT of half-duplex multi-hop wireless networks that also attempts to identify where possible, codes that achieve the DMT.For example, it is shown how one can construct codes that achieve the DMT of a network under a given schedule and either an amplify-and-forward or decode-and-forward protocol. Also contained in the paper,are discussions on the DMT of the multiple-access channel as well as the impact of feedback on the DMT of a MIMO channel.
Resumo:
We study the coverage in sensor networks having two types of nodes, sensor and backbone nodes. Each sensor is capable of transmitting information over relatively small distances. The backbone nodes collect information from the sensors. This information is processed and communicated over an ad-hoc network formed by the backbone nodes,which are capable of transmitting over much larger distances. We consider two modes of deployment of sensors, one a Poisson-Poisson cluster model and the other a dependently-thinned Poisson point process. We deduce limit laws for functionals of vacancy in both models using properties of association for random measures.
Resumo:
As computational Grids are increasingly used for executing long running multi-phase parallel applications, it is important to develop efficient rescheduling frameworks that adapt application execution in response to resource and application dynamics. In this paper, three strategies or algorithms have been developed for deciding when and where to reschedule parallel applications that execute on multi-cluster Grids. The algorithms derive rescheduling plans that consist of potential points in application execution for rescheduling and schedules of resources for application execution between two consecutive rescheduling points. Using large number of simulations, it is shown that the rescheduling plans developed by the algorithms can lead to large decrease in application execution times when compared to executions without rescheduling on dynamic Grid resources. The rescheduling plans generated by the algorithms are also shown to be competitive when compared to the near-optimal plans generated by brute-force methods. Of the algorithms, genetic algorithm yielded the most efficient rescheduling plans with 9-12% smaller average execution times than the other algorithms.
Resumo:
Wireless sensor networks can often be viewed in terms of a uniform deployment of a large number of nodes on a region in Euclidean space, e.g., the unit square. After deployment, the nodes self-organise into a mesh topology. In a dense, homogeneous deployment, a frequently used approximation is to take the hop distance between nodes to be proportional to the Euclidean distance between them. In this paper, we analyse the performance of this approximation. We show that nodes with a certain hop distance from a fixed anchor node lie within a certain annulus with probability approach- ing unity as the number of nodes n → ∞. We take a uniform, i.i.d. deployment of n nodes on a unit square, and consider the geometric graph on these nodes with radius r(n) = c q ln n n . We show that, for a given hop distance h of a node from a fixed anchor on the unit square,the Euclidean distance lies within [(1−ǫ)(h−1)r(n), hr(n)],for ǫ > 0, with probability approaching unity as n → ∞.This result shows that it is more likely to expect a node, with hop distance h from the anchor, to lie within this an- nulus centred at the anchor location, and of width roughly r(n), rather than close to a circle whose radius is exactly proportional to h. We show that if the radius r of the ge- ometric graph is fixed, the convergence of the probability is exponentially fast. Similar results hold for a randomised lattice deployment. We provide simulation results that il- lustrate the theory, and serve to show how large n needs to be for the asymptotics to be useful.
Resumo:
We consider the problem of quickest detection of an intrusion using a sensor network, keeping only a minimal number of sensors active. By using a minimal number of sensor devices,we ensure that the energy expenditure for sensing, computation and communication is minimized (and the lifetime of the network is maximized). We model the intrusion detection (or change detection) problem as a Markov decision process (MDP). Based on the theory of MDP, we develop the following closed loop sleep/wake scheduling algorithms: 1) optimal control of Mk+1, the number of sensors in the wake state in time slot k + 1, 2) optimal control of qk+1, the probability of a sensor in the wake state in time slot k + 1, and an open loop sleep/wake scheduling algorithm which 3) computes q, the optimal probability of a sensor in the wake state (which does not vary with time),based on the sensor observations obtained until time slot k.Our results show that an optimum closed loop control onMk+1 significantly decreases the cost compared to keeping any number of sensors active all the time. Also, among the three algorithms described, we observe that the total cost is minimum for the optimum control on Mk+1 and is maximum for the optimum open loop control on q.
Resumo:
We consider single-source single-sink (ss-ss) multi-hop relay networks, with slow-fading links and single-antenna half-duplex relay nodes. While two-hop cooperative relay networks have been studied in great detail in terms of the diversity-multiplexing tradeoff (DMT), few results are available for more general networks. In this paper, we identify two families of networks that are multi-hop generalizations of the two-hop network: K-Parallel-Path (KPP)networks and layered networks.KPP networks, can be viewed as the union of K node-disjoint parallel relaying paths, each of length greater than one. KPP networks are then generalized to KPP(I) networks, which permit interference between paths and to KPP(D) networks, which possess a direct link from source to sink. We characterize the DMT of these families of networks completely for K > 3. Layered networks are networks comprising of layers of relays with edges existing only between adjacent layers, with more than one relay in each layer. We prove that a linear DMT between the maximum diversity dmax and the maximum multiplexing gain of 1 is achievable for single-antenna fully-connected layered networks. This is shown to be equal to the optimal DMT if the number of relaying layers is less than 4.For multiple-antenna KPP and layered networks, we provide an achievable DMT, which is significantly better than known lower bounds for half duplex networks.For arbitrary multi-terminal wireless networks with multiple source-sink pairs, the maximum achievable diversity is shown to be equal to the min-cut between the corresponding source and the sink, irrespective of whether the network has half-duplex or full-duplex relays. For arbitrary ss-ss single-antenna directed acyclic networks with full-duplex relays, we prove that a linear tradeoff between maximum diversity and maximum multiplexing gain is achievable.Along the way, we derive the optimal DMT of a generalized parallel channel and derive lower bounds for the DMT of triangular channel matrices, which are useful in DMT computation of various protocols. We also give alternative and often simpler proofs of several existing results and show that codes achieving full diversity on a MIMO Rayleigh fading channel achieve full diversity on arbitrary fading channels. All protocols in this paper are explicit and use only amplify-and-forward (AF) relaying. We also construct codes with short block-lengths based on cyclic division algebras that achieve the optimal DMT for all the proposed schemes.Two key implications of the results in the paper are that the half-duplex constraint does not entail any rate loss for a large class of cooperative networks and that simple AF protocols are often sufficient to attain the optimal DMT
Resumo:
We consider a setting in which several operators offer downlink wireless data access services in a certain geographical region. Each operator deploys several base stations or access points, and registers some subscribers. In such a situation, if operators pool their infrastructure, and permit the possibility of subscribers being served by any of the cooperating operators, then there can be overall better user satisfaction, and increased operator revenue. We use coalitional game theory to investigate such resource pooling and cooperation between operators.We use utility functions to model user satisfaction, and show that the resulting coalitional game has the property that if all operators cooperate (i.e., form a grand coalition) then there is an operating point that maximizes the sum utility over the operators while providing the operators revenues such that no subset of operators has an incentive to break away from the coalition. We investigate whether such operating points can result in utility unfairness between users of the various operators. We also study other revenue sharing concepts, namely, the nucleolus and the Shapely value. Such investigations throw light on criteria for operators to accept or reject subscribers, based on the service level agreements proposed by them. We also investigate the situation in which only certain subsets of operators may be willing to cooperate.
Resumo:
In this article we study the problem of joint congestion control, routing and MAC layer scheduling in multi-hop wireless mesh network, where the nodes in the network are subjected to maximum energy expenditure rates. We model link contention in the wireless network using the contention graph and we model energy expenditure rate constraint of nodes using the energy expenditure rate matrix. We formulate the problem as an aggregate utility maximization problem and apply duality theory in order to decompose the problem into two sub-problems namely, network layer routing and congestion control problem and MAC layer scheduling problem. The source adjusts its rate based on the cost of the least cost path to the destination where the cost of the path includes not only the prices of the links in it but also the prices associated with the nodes on the path. The MAC layer scheduling of the links is carried out based on the prices of the links. We study the e�ects of energy expenditure rate constraints of the nodes on the optimal throughput of the network.
Resumo:
In sensor networks, routing algorithms should be designed such that packet losses due to wireless links are reduced.In this paper, we present a ”potential”-based routing scheme to find routes with high packet delivery ratios. The basic idea is to define a scalar potential value at each node in the network and forward data to the neighbour with the highest potential.For a simple 2-relay network, we propose a potential function that takes into account wireless channel state. Markov-chain based analysis provides analytical expressions for packet delivery ratio. Considerable improvement can be observed compared to a channel-state-oblivious policy. This motivates us to define a channel-state-dependent potential function in a general network context. Simulations show that for a relatively slowly changing wireless network, our approach can provide up to 20% better performance than the commonly- used shortest-hop-count-based routing.
Resumo:
Ionic polymer-metal composites (IPMC), piezoelectric polymer composites and nematic elastomer composites are materials, which exhibit characteristics of both sensors and actuators. Large deformation and curvature are observed in these systems when electric potential is applied. Effects of geometric non-linearity due to the chargeinduced motion in these materials are poorly understood. In this paper, a coupled model for understanding the behavior of an ionic polymer beam undergoing large deformation and large curvature is presented. Maxwell's equations and charge transport equations are considered which couple the distribution of the ion concentration and the pressure gradient along length of a cantilever beam with interdigital electrodes. A nonlinear constitutive model is derived accounting for the visco-elasto-plastic behavior of these polymers and based on the hypothesis that the presence of electrical charge stretches/contracts bonds, which give rise to electrical field dependent softening/hardening. Polymer chain orientation in statistical sense plays a role on such softening or hardening. Elementary beam kinematics with large curvature is considered. A model for understanding the deformation due to electrostatic repulsion between asymmetrical charge distributions across the cross-sections is presented. Experimental evidence that Silver(Ag) nanoparticle coated IPMCs can be used for energy harvesting is reported. An IPMC strip is vibrated in different environments and the electric power against a resistive load is measured. The electrical power generated was observed to vary with the environment with maximum power being generated when the strip is in wet state. IPMC based energy harvesting systems have potential applications in tidal wave energy harvesting, residual environmental energy harvesting to power MEMS and NEMS devices.