959 resultados para local background particle concentration
Resumo:
We present the results of airborne measurements of carbon monoxide (CO) and aerosol particle number concentration (CN) made during the Balan double dagger o Atmosf,rico Regional de Carbono na Amazonia (BARCA) program. The primary goal of BARCA is to address the question of basin-scale sources and sinks of CO2 and other atmospheric carbon species, a central issue of the Large-scale Biosphere-Atmosphere (LBA) program. The experiment consisted of two aircraft campaigns during November-December 2008 (BARCA-A) and May-June 2009 (BARCA-B), which covered the altitude range from the surface up to about 4500 m, and spanned most of the Amazon Basin. Based on meteorological analysis and measurements of the tracer, SF6, we found that airmasses over the Amazon Basin during the late dry season (BARCA-A, November 2008) originated predominantly from the Southern Hemisphere, while during the late wet season (BARCA-B, May 2009) low-level airmasses were dominated by northern-hemispheric inflow and mid-tropospheric airmasses were of mixed origin. In BARCA-A we found strong influence of biomass burning emissions on the composition of the atmosphere over much of the Amazon Basin, with CO enhancements up to 300 ppb and CN concentrations approaching 10 000 cm(-3); the highest values were in the southern part of the Basin at altitudes of 1-3 km. The Delta CN/Delta CO ratios were diagnostic for biomass burning emissions, and were lower in aged than in fresh smoke. Fresh emissions indicated CO/CO2 and CN/CO emission ratios in good agreement with previous work, but our results also highlight the need to consider the residual smoldering combustion that takes place after the active flaming phase of deforestation fires. During the late wet season, in contrast, there was little evidence for a significant presence of biomass smoke. Low CN concentrations (300-500 cm(-3)) prevailed basinwide, and CO mixing ratios were enhanced by only similar to 10 ppb above the mixing line between Northern and Southern Hemisphere air. There was no detectable trend in CO with distance from the coast, but there was a small enhancement of CO in the boundary layer suggesting diffuse biogenic sources from photochemical degradation of biogenic volatile organic compounds or direct biological emission. Simulations of CO distributions during BARCA-A using a range of models yielded general agreement in spatial distribution and confirm the important contribution from biomass burning emissions, but the models evidence some systematic quantitative differences compared to observed CO concentrations. These mismatches appear to be related to problems with the accuracy of the global background fields, the role of vertical transport and biomass smoke injection height, the choice of model resolution, and reliability and temporal resolution of the emissions data base.
Resumo:
Dense enough compact objects were recently shown to lead to an exponentially fast increase of the vacuum energy density for some free scalar fields properly coupled to the spacetime curvature as a consequence of a tachyonic-like instability. Once the effect is triggered, the star energy density would be overwhelmed by the vacuum energy density in a few milliseconds. This demands that eventually geometry and field evolve to a new configuration to bring the vacuum back to a stationary regime. Here, we show that the vacuum fluctuations built up during the unstable epoch lead to particle creation in the final stationary state when the tachyonic instability ceases. The amount of created particles depends mostly on the duration of the unstable epoch and final stationary configuration, which are open issues at this point. We emphasize that the particle creation coming from the tachyonic instability will occur even in the adiabatic limit, where the spacetime geometry changes arbitrarily slowly, and therefore is quite distinct from the usual particle creation due to the change in the background geometry.
Resumo:
We show that a single imperfect fluid can be used as a source to obtain a mass-varying black hole in an expanding universe. This approach generalizes the well-known McVittie spacetime, by allowing the mass to vary thanks to a novel mechanism based on the presence of a temperature gradient. This fully dynamical solution, which does not require phantom fields or fine-tuning, is a step forward in a new direction in the study of systems whose local gravitational attraction is coupled to the expansion of the universe. We present a simple but instructive example for the mass function and briefly discuss the structure of the apparent horizons and the past singularity.
Resumo:
We study the interaction between dark sectors by considering the momentum transfer caused by the dark matter scattering elastically within the dark energy fluid. Describing the dark scattering analogy to the Thomson scattering which couples baryons and photons, we examine the impact of the dark scattering in CMB observations. Performing global fitting with the latest observational data, we find that for a dark energy equation of state w < -1, the CMB gives tight constraints on dark matter-dark energy elastic scattering. Assuming a dark matter particle of proton mass, we derive an elastic scattering cross section of sigma(D) < 3.295 x 10(-10)sigma(T) where sigma(T) is the cross section of Thomson scattering. For w > -1, however, the constraints are poor. For w = -1, sigma(D) can formally take any value.
Resumo:
This work presents a study on the effects of the particle size, material concentration and radiation energy on the X-ray absorption. CuO nanoparticles and microparticles were incorporated separately into a polymeric resin in concentrations of 5%, 10% and 30% relative to the resin mass. X-ray absorption by these materials was analyzed with a CdTe detector. The X-ray absorption is higher for the nanostructured material compared to the microstructured one for low energy X-ray beams for all CuO concentrations. (c) 2011 Elsevier Ltd. All rights reserved.
Resumo:
In this study, the measurement of the concentration and size of particles and the identification of their sources were carried out at five orthopedic surgeries. The aerosol concentration and particle size distribution, ranging from 0.3 mu m 10 mu m, were measured and related to the type of indoor activity. The handling of surgical linen and gowns, handling of the patient, use of electrosurgical apparatus, use of a bone saw, handling of equipment, and cleaning of the room were identified as the most important sources of particles, with each of these activities posing different risks to the health of the patients and workers. The results showed that most of the particles were above 0.5 mu m and that there was a strong correlation among all particles of sizes above 1 mu m. Particles with diameters in the range of 0.3 mu m-0.5 mu m had a good correlation only with particles in the ranges of 0.5 mu m-1.0 mu m and 1.0 mu m-3.0 mu m in three of the surgeries analyzed. Findings led to the conclusion that most of the events responsible for generating aerosol particles in an orthopedic surgery room are brief, intermittent, and highly variable, thus requiring the use of specific instrumentation for their continuous identification and characterization.
Resumo:
Background: The effect of intranasal corticosteroids on the nasal epithelium mucosa is an important parameter of treatment safety. This study was designed to examine whether treatment with topical corticosteroids in patients with allergic rhinitis causes atrophic nasal mucosal changes, when compared with systemic corticosteroids, in rats. Methods: Male Wistar rats were treated daily during 7 weeks with topical administration with 10 microliters of normal saline (control group), 10 microliters of mometasone furoate group, 10 microliters of triamcinolone acetonide (T group), and 8 mg/kg of daily subcutaneous injections of methylprednisolone sodium succinate (MP group). Body weight was evaluated weekly. At the end of the treatment, rats were killed by decapitation to collect blood for determination of corticosterone levels and nasal cavities were prepared for histological descriptive analyses. Results: Treatment with T and MP decreased body weight. Plasma corticosterone concentration was significantly reduced by MP treatment and presented a clear tendency to decrease after T treatment. Histological changes observed in group T included ripples, cell vacuolization, increase in the number of nuclei, and decrease in the number of cilia in the epithelial cells. Conclusion: Growth and corticosterone concentration were impaired by T and MP at the same proportion, suggesting a role of this hormone in body gain. With the exception of T, intranasal or systemic treatment with the corticosteroids evaluated in this study did not affect nasal mucosa. (Am J Rhinol Allergy 26, e46-e49, 2012; doi: 10.2500/ajra.2012.26.3702)
Resumo:
Large conurbations are a significant source of the anthropogenic pollution and demographic differences between cities that result in a different pollution burden. The metropolitan area of Sao Paulo (MASP, population 20 million) accounts for one fifth of the Brazilian vehicular fleet. A feature of MASP is the amount of ethanol used by the vehicular fleet, known to exacerbate air quality. The study describes the diurnal behaviour of the submicron aerosol and relies on total particle number concentration, particle number size distribution, light scattering and light absorption measurements. Modelled planetary boundary layer (PBL) depth and air mass movement data were used to aid the interpretation. During morning rush-hour, stagnant air and a shallow PBL height favour the accumulation of aerosol pollution. During clear-sky conditions, there was a wind shift towards the edge of the city indicating a heat island effect with implications on particulate pollution levels at the site. The median total particle number concentration for the submicron aerosol typically varied in the range 1.6 x 10(4)-3.2 x 10(4) cm(-3) frequently exceeding 4 x 10(4) cm-3 during the day. During weekdays, nucleation-mode particles are responsible for most of the particles by numbers. The highest concentrations of total particle number concentrations and black carbon (BC) were observed on Fridays. Median diurnal values for light absorption and light scattering (at 637 nm wavelength) varied in the range 12-33 Mm(-1) and 21-64 Mm(-1), respectively. The former one is equal to 1.8-5.0 mu g m(-3) of BC. The growth of the PBL, from the morning rush-hour until noon, is consistent with the diurnal cycle of BC mass concentrations. Weekday hourly median single-scattering albedo (omega(0)) varied in the range 0.59-0.76. Overall, this suggests a top of atmosphere (TOA) warming effect. However, considering the low surface reflectance of urban areas, for the given range of omega(0), the TOA radiative forcing can be either positive or negative for the sources within the MASP. On the average, weekend omega(0) values were 0.074 higher than during weekdays. During 11% of the days, new particle formation (NPF) events occurred. The analysed events growth rates ranged between 9 and 25 nm h(-1). Sulphuric acid proxy concentrations calculated for the site were less than 5% of the concentration needed to explain the observed growth. Thus, other vapours are likely contributors to the observed growth.
Resumo:
Background:The golden retriever muscular dystrophy (GRMD) dogs represent the best available animal model for therapeutic trials aiming at the future treatment of human Duchenne muscular dystrophy (DMD). We have obtained a rare litter of six GRMD dogs (3 males and 3 females) born from an affected male and a carrier female which were submitted to a therapeutic trial with adult human stem cells to investigate their capacity to engraft into dogs muscles by local as compared to systemic injection without any immunosuppression. Methods Human Immature Dental Pulp Stem Cells (hIDPSC) were transplanted into 4 littermate dogs aged 28 to 40 days by either arterial or muscular injections. Two non-injected dogs were kept as controls. Clinical translation effects were analyzed since immune reactions by blood exams and physical scores capacity of each dog. Samples from biopsies were checked by immunohistochemistry (dystrophin markers) and FISH for human probes. Results and Discussion We analyzed the cells' ability in respect to migrate, engraftment, and myogenic potential, and the expression of human dystrophin in affected muscles. Additionally, the efficiency of single and consecutive early transplantation was compared. Chimeric muscle fibers were detected by immunofluorescence and fluorescent in situ hybridisation (FISH) using human antibodies and X and Y DNA probes. No signs of immune rejection were observed and these results suggested that hIDPSC cell transplantation may be done without immunosuppression. We showed that hIDPSC presented significant engraftment in GRMD dog muscles, although human dystrophin expression was modest and limited to several muscle fibers. Better clinical condition was also observed in the dog, which received monthly arterial injections and is still clinically stable at 25 months of age. Conclusion Our data suggested that systemic multiple deliveries seemed more effective than local injections. These findings open important avenues for further researches.
Resumo:
Abstract Background This study compares the immediate effects of local and adjacent acupuncture on the tibialis anterior muscle and the amount of force generated or strength in Kilogram Force (KGF) evaluated by a surface electromyography. Methods The study consisted of a single blinded trial of 30 subjects assigned to two groups: local acupoint (ST36) and adjacent acupoint (SP9). Bipolar surface electrodes were placed on the tibialis anterior muscle, while a force transducer was attached to the foot of the subject and to the floor. An electromyograph (EMG) connected to a computer registered the KGF and root mean square (RMS) before and after acupuncture at maximum isometric contraction. The RMS values and surface electrodes were analyzed with Student's t-test. Results Thirty subjects were selected from a total of 56 volunteers according to specific inclusion and exclusion criteria and were assigned to one of the two groups for acupuncture. A significant decrease in the RMS values was observed in both ST36 (t = -3.80, P = 0,001) and SP9 (t = 6.24, P = 0.001) groups after acupuncture. There was a decrease in force in the ST36 group after acupuncture (t = -2.98, P = 0.006). The RMS values did not have a significant difference (t = 0.36, P = 0.71); however, there was a significant decrease in strength after acupuncture in the ST36 group compared to the SP9 group (t = 2.51, P = 0.01). No adverse events were found. Conclusion Acupuncture at the local acupoint ST36 or adjacent acupoints SP9 reduced the tibialis anterior electromyography muscle activity. However, acupuncture at SP9 did not decrease muscle strength while acupuncture at ST36 did.
Resumo:
Diffusion is a common phenomenon in nature and generally is associated with a system trying to reach a local or a global equilibrium state, as a result of highly irregular individual particle motion. Therefore it is of fundamental importance in physics, chemistry and biology. Particle tracking in complex fluids can reveal important characteristics of its properties. In living cells, we coat the microbead with a peptide (RGD) that binds to integrin receptors at the plasma membrane, which connects to the CSK. This procedure is based on the hypothesis that the microsphere can move only if the structure where it is attached move as well. Then, the observed trajectory of microbeads is a probe of the cytoskeleton (CSK), which is governed by several factors, including thermal diffusion, pressure gradients, and molecular motors. The possibility of separating the trajectories into passive and active diffusion may give information about the viscoelasticity of the cell structure and molecular motors activity. And also we could analyze the motion via generalized Stokes-Einstein relation, avoiding the use of any active techniques. Usually a 12 to 16 Frames Per Second (FPS) system is used to track the microbeads in cell for about 5 minutes. Several factors make this FPS limitation: camera computer communication, light, computer speed for online analysis among others. Here we used a high quality camera and our own software, developed in C++ and Linux, to reach high FPS. Measurements were conducted with samples for 10£ and 20£ objectives. We performed sequentially images with different intervals, all with 2 ¹s exposure. The sequences of intervals are in milliseconds: 4 5 ms (maximum speed) 14, 25, 50 and 100 FPS. Our preliminary results highlight the difference between passive and active diffusion, since the passive diffusion is represented by a Gaussian in the distribution of displacements of the center of mass of individual beads between consecutive frames. However, the active process, or anomalous diffusion, shows as long tails in the distribution of displacements.
Resumo:
[EN] The principal aim of this investigation was to determine the influence of blood haemoglobin concentration ([Hb]) on maximal exercise capacity and maximal O(2) consumption (V(O(2),max)) in healthy subjects acclimatised to high altitude. Secondarily, we examined the effects of [Hb] on the regulation of cardiac output (CO), blood pressure and muscular blood flow (LBF) during exercise. Eight Danish lowlanders (three females and five males; 24 +/- 0.6 years, mean +/- S.E.M.) performed submaximal and maximal exercise on a cycle ergometer after 9 weeks at an altitude of 5260 m (Mt Chacaltaya, Bolivia). This was done first with the high [Hb] resulting from acclimatisation and again 2-4 days later, 1 h after isovolaemic haemodilution with Dextran 70 to near sea level [Hb]. After measurements at maximal exercise while breathing air at each [Hb], subjects were switched to hyperoxia (55 % O(2) in N(2)) and the measurements were repeated, increasing the work rate as tolerated. Hyperoxia increased maximal power output and leg V(O(2),max), showing that breathing ambient air at 5260 m, V(O(2),max) is limited by the availability of O(2) rather than by muscular oxidative capacity. Altitude increased [Hb] by 36 % from 136 +/- 5 to 185 +/- 5 g l(-1) (P < 0.001), while haemodilution (replacing 1 l of blood with 1 l of 6 % Dextran) lowered [Hb] by 24 % to 142 +/- 6 g l(-1) (P < 0.001). Haemodilution had no effect on maximal pulmonary or leg V(O(2),max), or power output. Despite higher LBF, leg O(2) delivery was reduced and maximal V(O(2)) was thus maintained by higher O(2) extraction. While CO increased linearly with work rate irrespective of [Hb] or inspired oxygen fraction (F(I,O(2))), both LBF and leg vascular conductance were systematically higher when [Hb] was low. Close and significant relationships were seen between LBF (and CO) and both plasma noradrenaline and K(+) concentrations, independently of [Hb] and F(I,O(2)). In summary, under conditions where O(2) supply limits maximal exercise, the increase in [Hb] with altitude acclimatisation does not improve maximal exercise capacity or V(O(2),max), and does not alter peak CO. However, LBF and vascular conductance are higher at altitude when [Hb] is lowered to sea level values, with both relating closely to catecholamine and potassium concentrations. This suggests that the lack of effect of [Hb] on V(O(2),max) may involve reciprocal changes in LBF via local metabolic control of the muscle vasculature.
Resumo:
During the last decade advances in the field of sensor design and improved base materials have pushed the radiation hardness of the current silicon detector technology to impressive performance. It should allow operation of the tracking systems of the Large Hadron Collider (LHC) experiments at nominal luminosity (1034 cm-2s-1) for about 10 years. The current silicon detectors are unable to cope with such an environment. Silicon carbide (SiC), which has recently been recognized as potentially radiation hard, is now studied. In this work it was analyzed the effect of high energy neutron irradiation on 4H-SiC particle detectors. Schottky and junction particle detectors were irradiated with 1 MeV neutrons up to fluence of 1016 cm-2. It is well known that the degradation of the detectors with irradiation, independently of the structure used for their realization, is caused by lattice defects, like creation of point-like defect, dopant deactivation and dead layer formation and that a crucial aspect for the understanding of the defect kinetics at a microscopic level is the correct identification of the crystal defects in terms of their electrical activity. In order to clarify the defect kinetic it were carried out a thermal transient spectroscopy (DLTS and PICTS) analysis of different samples irradiated at increasing fluences. The defect evolution was correlated with the transport properties of the irradiated detector, always comparing with the un-irradiated one. The charge collection efficiency degradation of Schottky detectors induced by neutron irradiation was related to the increasing concentration of defects as function of the neutron fluence.
Resumo:
Congresos y conferencias
Resumo:
Flugzeuggestützte Messungen des atmosphärischen Aerosols: Saharastaub, stratosphärisches Hintergrundaerosol und nichtsichtbare Wolken in den Tropen Im Rahmen der vorliegenden Arbeit wurden flugzeuggestütze Messungen des atmosphärischen Aerosols durchgeführt. Das hierfür eingesetzten Meßinstrument (FSSP-300) mißt die Intensität des von einzelnen Aerosolpartikeln in Vorwärtsrichtung gestreuten Lichts. Der Meßbereich umfaßt Partikeldurchmesser von ca. 0,4 µm bis 20 µm. Das FSSP-300 wurde auf mehreren Flugzeugen eingesetzt, u. a. auch erstmals auf dem russischen Höhenforschungsflugzeug Geophysika. Bei der Meßkampagen ACE-2 wurden im Juli 1997 von Teneriffa aus zwei Schichten windgetragenen Sahara-Staubes beobachtet. Die tiefere Schicht reichte bis in 1500 m Höhe, die höhere Schicht bis in 6000 m bei einer Schichtdicke von über 3000 m. In einer Analyse der Wetterlage und von Rückwärtstrajektorien wird der Ursprung des Staubes dargestellt. Die mit dem FSSP-300 gemessenen Größenverteilungen werden durch Messungen anderer Partikel-Meßinstrumente ergänzt und mit Literaturdaten verglichen. Im Rahmen der Untersuchung des stratosphärischen Aerosols wurden Messungen aus zwei Perioden ohne vulkanischen Einfluß und aus der Zeit nach dem Ausbruch des Vulkans Pinatubo verglichen. Die beiden Perioden reinen Hintergrundaerosols lagen mit über fünf Jahren eine vergleichbare Zeitspanne nach großen Vulkanausbrüchen. Die Analyse der Aerosolmessungen umfaßt den zeitlichen Verlauf der Gesamtkonzentration als auch den Vergleich von Größenverteilungen aus den verschiedenen Perioden. Bei den Flügen über dem Indischen Ozean während der Meßkampagne APE-THESEO auf den Seychellen wurden verschiedene Schichten von Cirren im Bereich des Ausläufers eines Cumulonimbus und direkt an der Tropopause beobachtet. Letztere und auch einige Bereiche der ersteren waren nichtsichtbar, d. h. hatten eine optische Dicke von weniger als 0,03 im sichtbaren Licht. Die Partikelmessungen werden auch im Kontext der Ergebnisse anderer Meßinstrumente und einer meteorologischen Analyse der Wettersituation betrachtet. Die gemessenen Größenverteilungen sind eine wichtige Ergänzung der wenigen früheren Veröffentlichungen zu diesem Thema.