929 resultados para literacy and material semiotics


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnon contribution to the resistance of ferromagnetic film like Permalloy is investigated by magnetotransport measurements. We are able to observe and distinguish Anisotropic-Magnetoresistance(AMR)(1) and Magnon Magnetoresistance(MMR)(2) contributions clearly in PLD grown Permalloy films. A linear non-saturating longitudinal MR observed in high field regime for permalloy films could never be explained using AMR but only MMR can account for it.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Imaging thick specimen at a large penetration depth is a challenge in biophysics and material science. Refractive index mismatch results in spherical aberration that is responsible for streaking artifacts, while Poissonian nature of photon emission and scattering introduces noise in the acquired three-dimensional image. To overcome these unwanted artifacts, we introduced a two-fold approach: first, point-spread function modeling with correction for spherical aberration and second, employing maximum-likelihood reconstruction technique to eliminate noise. Experimental results on fluorescent nano-beads and fluorescently coated yeast cells (encaged in Agarose gel) shows substantial minimization of artifacts. The noise is substantially suppressed, whereas the side-lobes (generated by streaking effect) drops by 48.6% as compared to raw data at a depth of 150 mu m. Proposed imaging technique can be integrated to sophisticated fluorescence imaging techniques for rendering high resolution beyond 150 mu m mark. (C) 2013 AIP Publishing LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Frictionally constrained condition implies dependence of friction force on tangential displacement amplitude. The condition may occur due to chemical, physical, and/or mechanical interaction between the contacting surfaces. The condition, sometimes also referred to as the presliding condition or partial slip condition, is characterized under fretting. Under such conditions, various experimental studies indicate the existence of two distinguishable regions, that is, stick region and slip region. In the present study, frictionally constrained conditions are identified and the evolutions of stick-slip regions are investigated in detail. Investigations have been performed on self-mated stainless steel and chromium carbide coated surfaces mated against stainless steel, under both vacuum and ambient conditions. Contact conditions prevailing at the contact interface were identified based on the mechanical responses and were correlated with the surface damage observed. Surface degradation has been observed in the form of microcracks and material transfer. Detailed numerical analysis has also been performed in order to understand the energy dissipation and the damage mode involved in the surface or subsurface damage. It has been observed that under frictionally constrained conditions, the occurrence of annular slip features are mainly due to the junction growth, resulting from elastic-plastic deformation at the contact interface. Ratcheting has been observed as the governing damage mode under cyclic tangential loading condition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adhesive interaction between impacting bodies can cause energy loss, even in an otherwise elastic impact. Adhesion force induces tensile stress in the bodies, which modifies the stress wave profile and influences the restitution behavior. We investigate this effect by developing a finite element framework, which incorporates a Lennard-Jones-type potential for modeling the adhesive interaction between volume elements. With this framework, the classical problems in contact mechanics can be revisited without the restrictive surface-force approximation. In this paper, we study the longitudinal impact of an elastic cylinder on a rigid half-space with adhesion. In the absence of adhesion, this problem reduces to the impact between two identical cylinders in which there is no energy loss. Adhesion causes a fraction of energy in the stress waves to remain in the cylinder as residual stress waves. This apparent loss in kinetic energy is shown to be a unique function of maximum tensile strain energy. We have developed a 1-D model in terms of interaction force parameters, velocity and material properties to estimate the tensile stain energy. We show that this model can be used to predict practically important phenomena like capture wherein the impacting bodies stick together. (C) 2013 Elsevier Masson SAS. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Compliant mechanisms are elastic continua used to transmit or transform force and motion mechanically. The topology optimization methods developed for compliant mechanisms also give the shape for a chosen parameterization of the design domain with a fixed mesh. However, in these methods, the shapes of the flexible segments in the resulting optimal solutions are restricted either by the type or the resolution of the design parameterization. This limitation is overcome in this paper by focusing on optimizing the skeletal shape of the compliant segments in a given topology. It is accomplished by identifying such segments in the topology and representing them using Bezier curves. The vertices of the Bezier control polygon are used to parameterize the shape-design space. Uniform parameter steps of the Bezier curves naturally enable adaptive finite element discretization of the segments as their shapes change. Practical constraints such as avoiding intersections with other segments, self-intersections, and restrictions on the available space and material, are incorporated into the formulation. A multi-criteria function from our prior work is used as the objective. Analytical sensitivity analysis for the objective and constraints is presented and is used in the numerical optimization. Examples are included to illustrate the shape optimization method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Light weight structures with tailored mechanical properties have evolved beyond regular hexagonal/circular honeycomb topology. For applications which demand anisotropic mechanical properties, elliptical-celled structures offer interesting features. This paper characterizes the anisotropic in-plane elastic response of coated thin elliptical tubes in different array patterns viz, close-packed, diagonal and rectangular patterns under compression. This paper also extends earlier works on elliptical close-packed structure to a more general case of coated tubes. Theoretical framework using thin ring theory provides formulae in terms of geometric and material parameters. These are compared with a series of FE simulations using contact elements. The FE results are presented as graphs to aid in design. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the room temperature fabrication of Ta/TiO2/Ta metal-insulator-metal (MIM) capacitors (mainly, for DRAM applications). The fabricated devices show high capacitance density (similar to 15 fF/mu m(2)), and low leakage current density of 6.4 X 10(-8) A/cm(2) (27 degrees C) and 3.3 x 10(-6) A/cm(2) (125 degrees C) at -1 V. We analyze the electrical and material characteristics of the fabricated capacitors, and compare the device performance of these capacitors with other TiO2 and TiO2-based MIM capacitors reported in recent literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

介绍了一种通过Hopkinson拉伸实验、圆筒爆炸试验和计算机仿真来确定Johnson-Cook材料模型中相关常数的方法。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present paper studies numerical modelling of near-wall two-phase flows induced by a normal shock wave moving at a constant speed, over a micronsized particles bed. In this two-fluid model, the possibility of particle trajectory intersection is considered and a full Lagrangian formulation of the dispersed phase is introduced. The finiteness of the Reynolds and Mach numbers of the flow around a particle as well as the fineness of the particle sizes are taken into account in describing the interactions between the carrier- and dispersed- phases. For the small mass-loading ratio case, the numerical simulation of flow structure of the two phases is implemented and the profiles of the particle number density are obtained under the constant-flux condition on the wall. The effects of the shock Mach number and the particle size and material density on particle entrainment motion are discussed in detail.The obtained results indicate that interphase non-equilibrium in the velocity and temperature is a common feature for this type of flows and a local particle accumulation zone may form near the envelope of the particle trajectory family.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Until quite recently our understanding of the basic mechanical process responsible for earthquakes and faulting was not well known. It can be argued that this was partly a consequence of the complex nature of fracture in crust and in part because evidence of brittle phenomena in the natural laboratory of the earth is often obliterated or obscured by other geological processes. While it is well understood that the spatial and temporal complexity of earthquakes and the fault structures emerge from geometrical and material built-in heterogeneities, one important open question is how the shearing becomes localized into a band of intense fractures. Here the authors address these questions through a numerical approach of a tectonic plate by considering rockmass heterogeneity both in microscopic scale and in mesoscopic scale. Numerical simulations of the progressive failure leading to collapse under long-range slow driving forces in the far-field show earthquake-like rupture behavior. $En Echelon$ crack-arrays are reproduced in the numerical simulation. It is demonstrated that the underlying fracturing induced acoustic emissions (or seismic events) display self-organized criticality------from disorder to order. The seismic cycles and the geometric structures of the fracture faces, which are found greatly depending on the material heterogeneity (especially on the macroscopic scale), agree with that observed experimentally in real brittle materials. It is concluded that in order to predict a main shock, one must have extremely detailed knowledge on very minor features of the earth's crust far from the place where the earthquake originated. If correct, the model proposed here seemingly provides an explanation as to why earthquakes to date are not predicted so successfully. The reason is not that the authors do not understand earthquake mechanisms very well but that they still know little about our earth's crust.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plastic collapse modes of sandwich beams have been investigated experimentally and theoretically for the case of an aluminum alloy foam with cold-worked aluminum face sheets. Plastic collapse is by three competing mechanisms: face yield, indentation and core shear, with the active mechanism depending upon the choice of geometry and material properties. The collapse loads, as predicted by simple upper bound solutions for a rigid, ideally plastic beam, and by more refined finite element calculations are generally in good agreement with the measured strengths. However, a thickness effect of the foam core on the collapse strength is observed for collapse by core shear: the shear strength of the core increases with diminishing core thickness in relation to the cell size. Limit load solutions are used to construct collapse maps, with the beam geometrical parameters as axes. Upon displaying the collapse load for each collapse mechanism, the regimes of dominance of each mechanism and the associate mass of the beam are determined. The map is then used in optimal design by minimizing the beam weight for a given structural load index.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single crystal gallium nitride (GaN) is an important technological material used primarily for the manufacture of blue light lasers. An important area of contemporary research is developing a viable growth technique. The ammonothermal technique is an important candidate among many others with promise of commercially viable growth rates and material quality. The GaN growth rates are a complicated function of dissolution kinetics, transport by thermal convection and crystallization kinetics. A complete modeling effort for the growth would involve modeling each of these phenomena and also the coupling between these. As a first step, the crystallization and dissolution kinetics were idealized and the growth rates as determined purely by transport were investigated. The growth rates thus obtained were termed ‘transport determined growth rates’ and in principle are the maximum growth rates that can be obtained for a given configuration of the system. Using this concept, a parametric study was conducted primarily on the geometric and the thermal boundary conditions of the system to optimize the ‘transport determined growth rate’ and determine conditions when transport might be a bottleneck.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thermally induced interfacial delamination problem of a segmented coating is investigated using finite element method (FEM). The coating-substrate system, modeled as a coated semi-infinite medium with periodic segmentation cracks within coating, is assumed to be exposed to convective cooling from surface. The failure criterion based on the interfacial fracture toughness is adopted, in which the energy release rate for an interface crack is considered to be the driving force for interfacial delamination extension. The results confirm that a segmented coating has higher delamination resistance than an intact one under the same thermal transients, as the segmentation crack spacing is smaller than a critical value. Based on dimensional analysis, sensitivity analyses of the crack driving force are also obtained as a function of various dimensionless parameters such as time, convection severity and material constants. These results may provide some helpful references for the integrity of coating-substrate systems under thermal loading. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a logarithmic expression to describe the residual strength degradation process is developed in order to fatigue test results for normalized carbon steel. The definition and expression of fatigue damage due to symmetrical stress with a constant amplitude are also given. The expression of fatigue damage can also explain the nonlinear properties of fatigue damage. Furthermore, the fatigue damage of structures under random stress is analyzed, and an iterative formula to describe the fatigue damage process is deduced. Finally, an approximate method for evaluating the fatigue life of structures under repeated random stress blocking is presented through various calculation examples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of two secondary effects, rotatory inertia and presence of a crack, on the dynamic plastic shear failure of a cantilever with an attached mass block at its tip subjected to impulsive loading is investigated. It is illustrated that the consideration of the rotatory inertia of the cantilever and the presence of a crack at the upper root of the beam both increase the initial kinetic energy of the block required to cause shear failure at the interface between the beam tip and the tip mass, where the initial velocity has discontinuity Therefore, the influence of these two secondary effects on the dynamic shear failure is not negligible.