926 resultados para light and electron microscopy
Resumo:
The localization of neuropeptide Y (NPY) Y1 receptor (R) -like immunoreactivity (LI) has been studied in cerebral arteries and arterioles of the rat by immunohistochemistry using fluorescence, confocal, and electron microscopy. High levels of Y1-R-LI were observed in smooth muscle cells (SMCs) in the small arterioles of the pial arterial network, especially on the basal surface of the brain, and low levels in the major basal cerebral arteries. The levels of Y1-R-LI varied strongly between adjacent SMCs. Y1-R-LI was associated with small endocytosis vesicles, mainly on the outer surface of the SMCs, but also on their endothelial side and often laterally at the interface between two SMCs. NPY-immunoreactive (Ir) nerve fibers could not be detected in association with the Y1-R-rich small arterioles but only around arteries with low Y1-R levels. A dense network of central NPY-Ir nerve fibers in the superficial layers of the brain was lying close to the strongly Y1-R-Ir small arterioles. The results indicate that NPY has a profound effect on small arterioles of the brain acting on Y1-Rs, both on the peripheral and luminal side of the SMCs. However, the source of the endogenous ligand, NPY, remains unclear. NPY released from central neurons may play a role, in addition to blood-borne NPY.
Resumo:
To investigate the role of filamentous actin in the endocytic pathway, we used the cell-permeant drug Jasplakinolide (JAS) to polymerize actin in intact polarized Madin–Darby canine kidney (MDCK) cells. The uptake and accumulation of the fluid-phase markers fluorescein isothiocyanate (FITC)-dextran and horseradish peroxidase (HRP) were followed in JAS-treated or untreated cells with confocal fluorescence microscopy, biochemical assays, and electron microscopy. Pretreatment with JAS increased the uptake and accumulation of fluid-phase markers in MDCK cells. JAS increased endocytosis in a polarized manner, with a marked effect on fluid-phase uptake from the basolateral surface but not from the apical surface of polarized MDCK cells. The early uptake of FITC-dextran and HRP was increased more than twofold in JAS-treated cells. At later times, FITC-dextran and HRP accumulated in clustered endosomes in the basal and middle regions of JAS-treated cells. The large accumulated endosomes were similar to late endosomes but they were not colabeled for other late endosome markers, such as rab7 or mannose-6-phosphate receptor. JAS altered transport in the endocytic pathway at a later stage than the microtubule-dependent step affected by nocodazole. JAS also had a notable effect on cell morphology, inducing membrane bunching at the apical pole of MDCK cells. Although other studies have implicated actin in endocytosis at the apical cell surface, our results provide novel evidence that filamentous actin is also involved in the endocytosis of fluid-phase markers from the basolateral membrane of polarized cells.
Resumo:
The trans-Golgi network (TGN) plays a pivotal role in directing proteins in the secretory pathway to the appropriate cellular destination. VAMP4, a recently discovered member of the vesicle-associated membrane protein (VAMP) family of trafficking proteins, has been suggested to play a role in mediating TGN trafficking. To better understand the function of VAMP4, we examined its precise subcellular distribution. Indirect immunofluorescence and electron microscopy revealed that the majority of VAMP4 localized to tubular and vesicular membranes of the TGN, which were in part coated with clathrin. In these compartments, VAMP4 was found to colocalize with the putative TGN-trafficking protein syntaxin 6. Additional labeling was also present on clathrin-coated and noncoated vesicles, on endosomes and the medial and trans side of the Golgi complex, as well as on immature secretory granules in PC12 cells. Immunoprecipitation of VAMP4 from rat brain detergent extracts revealed that VAMP4 exists in a complex containing syntaxin 6. Converging lines of evidence implicate a role for VAMP4 in TGN-to-endosome transport.
Resumo:
Elastic fibers consist of two morphologically distinct components: elastin and 10-nm fibrillin-containing microfibrils. During development, the microfibrils form bundles that appear to act as a scaffold for the deposition, orientation, and assembly of tropoelastin monomers into an insoluble elastic fiber. Although microfibrils can assemble independent of elastin, tropoelastin monomers do not assemble without the presence of microfibrils. In the present study, immortalized ciliary body pigmented epithelial (PE) cells were investigated for their potential to serve as a cell culture model for elastic fiber assembly. Northern analysis showed that the PE cells express microfibril proteins but do not express tropoelastin. Immunofluorescence staining and electron microscopy confirmed that the microfibril proteins produced by the PE cells assemble into intact microfibrils. When the PE cells were transfected with a mammalian expression vector containing a bovine tropoelastin cDNA, the cells were found to express and secrete tropoelastin. Immunofluorescence and electron microscopic examination of the transfected PE cells showed the presence of elastic fibers in the matrix. Biochemical analysis of this matrix showed the presence of cross-links that are unique to mature insoluble elastin. Together, these results indicate that the PE cells provide a unique, stable in vitro system in which to study elastic fiber assembly.
Resumo:
Retroviruses contain relatively large amounts of ubiquitin, but the significance of this finding has been unknown. Here, we show that drugs that are known to reduce the level of free ubiquitin in the cell dramatically reduced the release of Rous sarcoma virus, an avian retrovirus. This effect was suppressed by overexpressing ubiquitin and also by directly fusing ubiquitin to the C terminus of Gag, the viral protein that directs budding and particle release. The block to budding was found to be at the plasma membrane, and electron microscopy revealed that the reduced level of ubiquitin results in a failure of mature virus particles to separate from each other and from the plasma membrane during budding. These data indicate that ubiquitin is actually part of the budding machinery.
Resumo:
Herpesviruses have been previously correlated to vascular disease and shown to cause thrombogenic and atherogenic changes to host cells. Herein we show that even in the absence of cells, purified cytomegalovirus (CMV) and herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) can initiate thrombin production. Functional assays demonstrated that purified HSV-1 and HSV-2 provide the necessary phospholipid (proPL) for assembling the coagulation factors Xa and Va into prothrombinase, which is responsible for generating thrombin. These observations are consistent with our earlier studies involving CMV. The presence of proPL on all three herpesviruses was confirmed directly by flow cytometry and electron microscopy by using annexin V and factor Va, respectively, as proPL-specific probes. Of equal importance, we found that CMV, HSV-1, and HSV-2 were also able to facilitate factor Xa generation from the inactive precursor factor X, but only when factor VII/VIIa and Ca2+ were present. Monoclonal antibodies specific for tissue factor (TF), the coagulation initiator, inhibited this factor X activation and, furthermore, enabled identification of TF antigen on each virus type by flow cytometry and electron microscopy. Collectively, these data show that CMV, HSV-1, and HSV-2 can initiate the generation of thrombin by having essential proPL and TF activities on their surface. Unlike the normal cellular source, the viral activity is constitutive and, therefore, not restricted to sites of vascular injury. Thus cell-independent thrombin production may be the earliest event in vascular pathology mediated by herpesviruses.
Resumo:
Hair cells in many nonmammalian vertebrates are regenerated by the mitotic division of supporting cell progenitors and the differentiation of the resulting progeny into new hair cells and supporting cells. Recent studies have shown that nonmitotic hair cell recovery after aminoglycoside-induced damage can also occur in the vestibular organs. Using hair cell and supporting cell immunocytochemical markers, we have used confocal and electron microscopy to examine the fate of damaged hair cells and the origin of immature hair cells after gentamicin treatment in mitotically blocked cultures of the bullfrog saccule. Extruding and fragmenting hair cells, which undergo apoptotic cell death, are replaced by scar formations. After losing their bundles, sublethally damaged hair cells remain in the sensory epithelium for prolonged periods, acquiring supporting cell-like morphology and immunoreactivity. These modes of damage appear to be mutually exclusive, implying that sublethally damaged hair cells repair their bundles. Transitional cells, coexpressing hair cell and supporting cell markers, are seen near scar formations created by the expansion of neighboring supporting cells. Most of these cells have morphology and immunoreactivity similar to that of sublethally damaged hair cells. Ultrastructural analysis also reveals that most immature hair cells had autophagic vacuoles, implying that they originated from damaged hair cells rather than supporting cells. Some transitional cells are supporting cells participating in scar formations. Supporting cells also decrease in number during hair cell recovery, supporting the conclusion that some supporting cells undergo phenotypic conversion into hair cells without an intervening mitotic event.
Resumo:
The huntingtin exon 1 proteins with a polyglutamine repeat in the pathological range (51 or 83 glutamines), but not with a polyglutamine tract in the normal range (20 glutamines), form aggresome-like perinuclear inclusions in human 293 Tet-Off cells. These structures contain aggregated, ubiquitinated huntingtin exon 1 protein with a characteristic fibrillar morphology. Inclusion bodies with truncated huntingtin protein are formed at centrosomes and are surrounded by vimentin filaments. Inhibition of proteasome activity resulted in a twofold increase in the amount of ubiquitinated, SDS-resistant aggregates, indicating that inclusion bodies accumulate when the capacity of the ubiquitin–proteasome system to degrade aggregation-prone huntingtin protein is exhausted. Immunofluorescence and electron microscopy with immunogold labeling revealed that the 20S, 19S, and 11S subunits of the 26S proteasome, the molecular chaperones BiP/GRP78, Hsp70, and Hsp40, as well as the RNA-binding protein TIA-1, the potential chaperone 14–3-3, and α-synuclein colocalize with the perinuclear inclusions. In 293 Tet-Off cells, inclusion body formation also resulted in cell toxicity and dramatic ultrastructural changes such as indentations and disruption of the nuclear envelope. Concentration of mitochondria around the inclusions and cytoplasmic vacuolation were also observed. Together these findings support the hypothesis that the ATP-dependent ubiquitin–proteasome system is a potential target for therapeutic interventions in glutamine repeat disorders.
Resumo:
Because centrosomes were enriched in the bile canaliculi fraction from the chicken liver through their association with apical membranes, we developed a procedure for isolation of centrosomes from this fraction. With the use of the centrosomes, we generated centrosome-specific monoclonal antibodies. Three of the monoclonal antibodies recognized an antigen of ∼90 kDa. Cloning of its cDNA identified this antigen as a chicken homologue of outer dense fiber 2 protein (Odf2), which was initially identified as a sperm outer dense fiber-specific component. Exogenously expressed and endogenous Odf2 were shown to be concentrated at the centrosomes in a microtubule-independent manner in various types of cells at both light and electron microscopic levels. Odf2 exhibited a cell cycle-dependent pattern of localization and was preferentially associated with the mother centrioles in G0/G1-phase. Toward G1/S-phase before centrosome duplication, it became detectable in both mother and daughter centrioles. In the isolated bile canaliculi and centrosomes, Odf2, in contrast to other centrosomal components, was highly resistant to KI extraction. These findings indicate that Odf2 is a widespread KI-insoluble scaffold component of the centrosome matrix, which may be involved in the maturation event of daughter centrioles.
Resumo:
In higher plants, dominant mitochondrial mutations are associated with pollen sterility. This phenomenon is known as cytoplasmic male sterility (CMS). It is thought that the disruption in pollen development is a consequence of mitochondrial dysfunction. To provide definitive evidence that expression of an abnormal mitochondrial gene can interrupt pollen development, a CMS-associated mitochondrial DNA sequence from common bean, orf239, was introduced into the tobacco nuclear genome. Several transformants containing the orf239 gene constructs, with or without a mitochondrial targeting sequence, exhibited a semi sterile or male-sterile phenotype. Expression of the gene fusions in transformed anthers was confirmed using RNA gel blotting, ELISA, and light and electron microscopic immunocytochemistry. Immunocytological analysis showed that the ORF239 protein could associate with the cell wall of aberrant developing microspores. This pattern of extracellular localization was earlier observed in the CMS common bean line containing orf239 in the mitochondrial genome. Results presented here demonstrate that ORF239 causes pollen disruption in transgenic tobacco plants and may do so without targeting of the protein to the mitochondrion.
Resumo:
Nucleosomes, the basic structural elements of chromosomes, consist of 146 bp of DNA coiled around an octamer of histone proteins, and their presence can strongly influence gene expression. Considerations of the anisotropic flexibility of nucleotide triplets containing 3 cytosines or guanines suggested that a [5'(G/C)3 NN3']n motif might resist wrapping around a histone octamer. To test this, DNAs were constructed containing a 5'-CCGNN-3' pentanucleotide repeat with the Ns varied. Using in vitro nucleosome reconstitution and electron microscopy, a plasmid with 48 contiguous CCGNN repeats strongly excluded nucleosomes in the repeat region. Competitive reconstitution gel retardation experiments using DNA fragments containing 12, 24, or 48 CCGNN repeats showed that the propensity to exclude nucleosomes increased with the length of the repeat. Analysis showed that a 268-bp DNA containing a (CCGNN)48 block is 4.9 +/- 0.6-fold less efficient in nucleosome assembly than a similar length pUC19 fragment and approximately 78-fold less efficient than a similar length (CTG)n sequence, based on results from previous studies. Computer searches against the GenBank database for matches with a [(G/C)3NN]48 sequence revealed numerous examples that frequently were present in the control regions of "TATA-less" genes, including the human ETS-2 and human dihydrofolate reductase genes. In both cases the (G/C)3NN repeat, present in the promoter region, co-maps with loci previously shown to be nuclease hypersensitive sites.
Resumo:
The peptide guanylin, which has recently been isolated from the intestine, is involved in the regulation of fluid secretion in the intestinal epithelium by activation of guanylate cyclase C, the putative guanylin receptor. Since the latter protein is also expressed in airway epithelia, we investigated the lung of three mammalian species for the presence and cellular localization of guanylin by immunoblot (Western blot) analyses and light and electron microscopical immunocytochemistry. In Western blots of bovine, guinea pig, and rat lung extracts, three different guanylin antisera directed against the midportion and against the C terminus of the precursor molecule identified a peptide band corresponding to the apparent molecular mass of guanylin. Localization studies in the lung revealed that guanylin is exclusively confined to nonciliated secretory (Clara) cells in the lining of distal conducting airways. The presence of guanylin in the lung and particularly its specific localization to Clara cells indicate that these cells may play a pivotal role in the local (paracrine) regulation of electrolyte/water transport in airway epithelia.
Resumo:
The purpose of this study was to characterize organ culture of human neuroretina and to establish survival and early degeneration patterns of neural and glial cells. Sixteen neuroretina explants were prepared from 2 postmortem eyes of 2 individuals. Four explants were used as fresh retina controls, and 12 were evaluated at 3, 6, and 9 days of culture. Neuroretina explants (5 × 5 mm) were cultured in Transwell® dishes with the photoreceptor layer facing the supporting membrane. Culture medium (Neurobasal A-based) was maintained in contact with the membrane beneath the explant. Cryostat and ultrathin sections were prepared for immunohistochemistry and electron microscopy. Neuroretinal modifications were evaluated after toluidine blue staining and after immunostaining for neuronal and glial cell markers. Ultrastructural changes were analyzed by electron microscopy. From 0 to 9 days in culture, there was progressive retinal degeneration, including early pyknosis of photoreceptor nuclei, cellular vacuolization in the ganglion cell layer, decrease of both plexiform layer thicknesses, disruption and truncation of photoreceptor outer segments (OS), and marked reduction in the number of nuclei at both nuclear layers where the cells were less densely packed. At 3 days there was swelling of cone OS with impairment of pedicles, loss of axons and dendrites of horizontal and rod bipolar cells that stained for calbindin (CB) and protein kinase C (PKC-α), respectively. After 9 days, horizontal cells were pyknotic and without terminal tips. There were similar degenerative processes in the outer plexiform layer for rod bipolar cells and loss of axon terminal lateral varicosities in the inner plexiform layer. Glial fibrillary acidic protein (GFAP) staining did not reveal a dramatic increase of gliosis in Müller cells. However, some Müller cells were CB immunoreactive at 6 days of culture. Over 9 days of culture, human neuroretina explants underwent morphological changes in photoreceptors, particularly the OS and axon terminals, and in postsynaptic horizontal and bipolar cells. These early changes, not previously described in cultured human samples, reproduce some celullar modifications after retinal damage. Thus, this model may be suitable to evaluate therapeutic agents during retinal degeneration processes.
Resumo:
Subpixel techniques are commonly used to increase the spatial resolution in tracking tasks. Object tracking with targets of known shape permits obtaining information about object position and orientation in the three-dimensional space. A proper selection of the target shape allows us to determine its position inside a plane and its angular and azimuthal orientation under certain limits. Our proposal is demonstrated both numerical and experimentally and provides an increase the accuracy of more than one order of magnitude compared to the nominal resolution of the sensor. The experiment has been performed with a high-speed camera, which simultaneously provides high spatial and temporal resolution, so it may be interesting for some applications where this kind of targets can be attached, such as vibration monitoring and structural analysis.
Resumo:
Les impacts environnementaux dues à l'extraction minière sont considérables. C'est l'action des microorganismes, en utilisant leur métabolisme du soufre sur les déchets miniers, qui engendre les plus grands défis. Jusqu'à présent, peu de recherches ont été effectués sur les microorganismes environnementaux pour la compréhension globale de l'action du métabolisme du soufre dans une optique de prévention et de rémédiation des impacts environnementaux de l'extraction minière. Dans cette étude, nous avons étudié une bactérie environnementale, Acidithiobacillus thiooxidans, dans le but de comprendre le métabolisme du soufre selon le milieu de culture et le niveau d'acidité du milieu. Nous avons utilisé la transcriptomique à haut débit, RNA-seq, en association avec des techniques de biogéochimie et de microscopie à électrons pour déterminer l'expression des gènes codants les enzymes du métabolisme du soufre. Nous avons trouvé que l'expression des gènes des enzymes du métabolisme du soufre chez ce microorganisme sont dépendantes du milieu, de la phase de croissance et du niveau d'acidité présent dans le milieu. De plus, les analyses biogéochimiques montrent la présence de composés de soufre réduits et d'acide sulfurique dans le milieu. Finalement, une analyse par microscopie électronique révèle que la bactérie emmagasine des réserves de soufre dans son cytoplasme. Ces résultats permettent une meilleure compréhension de son métabolisme et nous rapprochent de la possibilité de développer une technique de prédiction des réactions ayant le potentiel de causer des impacts environnementaux dus à l'extraction minière.