946 resultados para jealousy induction
Resumo:
Glucose is the preferred carbon source for most eukaryotic cells and has profound effects on many cellular functions. How cells sense glucose and transduce a signal into the cell is a fundamental, unanswered question. Here we describe evidence that two unusual glucose transporters in the yeast Saccharomyces cerevisiae serve as glucose sensors that generate an intracellular glucose signal. The Snf3p high-affinity glucose transporter appears to function as a low glucose sensor, since it is required for induction of expression of several hexose transporter (HXT) genes, encoding glucose transporters, by low levels of glucose. We have identified another apparent glucose transporter, Rgt2p, that is strikingly similar to Snf3p and is required for maximal induction of gene expression in response to high levels of glucose. This suggests that Rgt2p is a high glucose-sensing counterpart to Snf3p. We identified a dominant mutation in RGT2 that causes constitutive expression of several HXT genes, even in the absence of the inducer glucose. This same mutation introduced into SNF3 also causes glucose-independent expression of HXT genes. Thus, the Rgt2p and Snf3p glucose transporters appear to act as glucose receptors that generate an intracellular glucose signal, suggesting that glucose signaling in yeast is a receptor-mediated process.
Resumo:
An amphiphilic analog of Locusta myotropin II (Lom-MT-II), Glu-Gly-Asp-Phe-Thr-Pro-Arg-Leu-amide, was synthesized by addition of 6-phenylhexanoic acid (6-Pha) linked through alanine to the amino terminus. This pseudopeptide, [6-Pha-Ala0]Lom-MT-II, was found to have pheromonotropic activity equivalent to pheromone biosynthesis activating neuropeptide when injected into females of Heliothis virescens. Topical application of [6-Pha-Ala0]Lom-MT-II or Helicoverpa zea-pheromone biosynthesis activating neuropeptide (PBAN), dissolved in dimethyl sulfoxide, to the descaled abdomen of females induced production of pheromone, although more Hez-PBAN than [6-Pha-Ala0]Lom-MT-II was required to obtain significant production of pheromone. Application of [6-Pha-Ala0]Lom-MT-II, dissolved in water, to the abdomen induced production of pheromone, but neither Hez-PBAN nor Lom-MT-II dissolved in water stimulated production of significant amounts of pheromone. Dose- and time-response studies indicated that application of the amphiphilic mimetic in water induced pheromone production in as little as 15 min after application and that the effects were maintained for prolonged periods. These findings show that amphiphilic pseudopeptide mimics of insect neuropeptides will penetrate the insect cuticle when applied topically in water and induce an endogenous response.
Resumo:
Interleukin (IL)-12 has strong antitumor activity in transplantable tumor systems in the mouse. The present study was designed to determine whether tumor induction by 3-methylcholanthrene (3-MC), a carcinogenic hydrocarbon, can be inhibited by IL-12. BALB/cBy mice were injected subcutaneously with 25 micrograms or 100 micrograms of 3-MC and treated with 100 ng, 10 ng, or 1 ng of IL-12 for 5 days a week for 18 weeks, with a schedule of 3 weeks on and 1 week off. In mice injected with 25 micrograms of 3-MC, treatment with 100 ng of IL-12 delayed tumor appearance and reduced tumor incidence. Tumor appearance was also delayed in mice injected with 100 micrograms of 3-MC and treated with 100 ng of IL-12, but the final tumor incidence was the same as in non-IL-12-treated mice. In contrast to the characteristically round, hard, well-circumscribed, and protruding tumor induced by 3-MC, a percentage of tumors induced in IL-12-treated mice had atypical characteristics: flat, soft, and invasive. Atypical tumors had a longer latent period and were more frequently seen in mice injected with 100 micrograms of 3-MC and treated with 100 ng of IL-12. Interferon gamma, IL-10, and tumor necrosis factor could be induced throughout the treatment period by IL-12, indicating that repeated injections of IL-12 do not induce a state of tachyphylaxis. High production of interferon gamma by CD8 T cells and a TH2-->TH1 or TH0 shift in the cytokine secretion profile of CD4 T cells were also seen in the IL-12-treated mice. IL-12 provides a powerful new way to explore the defensive role of the immune system in tumorigenesis.
Resumo:
The early growth response 1 (EGR-1) gene product is a transcription factor with role in differentiation and growth. We have previously shown that expression of exogenous EGR-1 in various human tumor cells unexpectedly and markedly reduces growth and tumorigenicity and, conversely, that suppression of endogenous Egr-1 expression by antisense RNA eliminates protein expression, enhances growth, and promotes phenotypic transformation. However, the mechanism of these effects remained unknown. The promoter of human transforming growth factor beta 1 (TGF-beta 1) contains two GC-rich EGR-1 binding sites. We show that expression of EGR-1 in human HT-1080 fibrosarcoma cells uses increased secretion of biologically active TGF-beta 1 in direct proportion (rPearson = 0.96) to the amount of EGR-1 expressed and addition of recombinant human TGF-beta 1 is strongly growth-suppressive for these cells. Addition of monoclonal anti-TGF-beta 1 antibodies to EGR-1-expressing HT-1080 cells completely reverses the growth inhibitory effects of EGR-1. Reporter constructs bearing the EGR-1 binding segment of the TGF-beta 1 promoter was activated 4- to 6-fold relative to a control reporter in either HT-1080 cells that stably expressed or parental cells cotransfected with an EGR-1 expression vector. Expression of delta EGR-1, a mutant that cannot interact with the corepressors, nerve growth factor-activated factor binding proteins NAB1 and NAB2, due to deletion of the repressor domain, exhibited enhanced transactivation of 2- to 3.5-fold over that of wild-type EGR-1 showing that the reporter construct reflected the appropriate in vivo regulatory context. The EGR-1-stimulated transactivation was inhibited by expression of the Wilms tumor suppressor, a known specific DNA-binding competitor. These results indicate that EGR-1 suppresses growth of human HT-1080 fibrosarcoma cells by induction of TGF-beta 1.
Resumo:
Peripheral blood mononuclear cells and lymphoid tissues from HIV-infected individuals display high levels of "tissue" transglutaminase (tTG) with respect to seronegative persons. In asymptomatic individuals, > 80% of the circulating CD4+ T cells synthesize tTG protein and the number of these cells matches the level of apoptosis detected in the peripheral blood mononuclear cells from the same patients. In HIV-infected lymph nodes tTG protein is localized in large number of cells (macrophages, follicular dendritic cells, and endothelial cells), showing distinctive morphological and biochemical features of apoptosis as well as in lymphocytes and syncytia. These findings demonstrate that during the course of HIV infection, high levels of apoptosis also occur in the accessory cells of lymphoid organs. The increased concentration of epsilon(gamma-glutamyl)lysine isodipeptide, the degradation product of tTG cross-linked proteins, observed in the blood of HIV-infected individuals demonstrates that the enzyme accumulated in the dying cells actively cross-links intracellular proteins. The enhanced levels of epsilon(gamma-glutamyl)lysine in the blood parallels the progression of HIV disease, suggesting that the isodipeptide determination might be a useful method to monitor the in vivo rate of apoptosis.
Resumo:
Graves disease is an autoimmune thyroid disease characterized by the presence of antibodies against the thyrotropin receptor (TSHR), which stimulate the thyroid to cause hyperthyroidism and/or goiter. By immunizing mice with fibroblasts transfected with both the human TSHR and a major histocompatibility complex class II molecule, but not by either alone, we have induced immune hyperthyroidism that has the major humoral and histological features of Graves disease: stimulating TSHR antibodies, thyrotropin binding inhibiting immunoglobulins, which are different from the stimulating TSHR antibodies, increased thyroid hormone levels, thyroid enlargement, thyrocyte hypercellularity, and thyrocyte intrusion into the follicular lumen. The results suggest that the aberrant expression of major histocompatibility complex class II molecules on cells that express a native form of the TSHR can result in the induction of functional anti-TSHR antibodies that stimulate the thyroid. They additionally suggest that the acquisition of antigen-presenting ability on a target cell containing the TSHR can activate T and B cells normally present in an animal and induce a disease with the major features of autoimmune Graves.
Resumo:
Auditory cortical receptive field plasticity produced during behavioral learning may be considered to constitute "physiological memory" because it has major characteristics of behavioral memory: associativity, specificity, rapid acquisition, and long-term retention. To investigate basal forebrain mechanisms in receptive field plasticity, we paired a tone with stimulation of the nucleus basalis, the main subcortical source of cortical acetylcholine, in the adult guinea pig. Nucleus basalis stimulation produced electroencephalogram desynchronization that was blocked by systemic and cortical atropine. Paired tone/nucleus basalis stimulation, but not unpaired stimulation, induced receptive field plasticity similar to that produced by behavioral learning. Thus paired activation of the nucleus basalis is sufficient to induce receptive field plasticity, possibly via cholinergic actions in the cortex.
Resumo:
The requirement for cooperative interactions between multiple synaptic inputs in the induction of long-term potentiation (LTP) and long-term depression (LTD) has been tested at Schaffer collateral synapses with paired recordings from monosynaptically coupled CA3-CA1 cell pairs in rat hippocampal slice cultures. Tetanization of single presynaptic neurons at 50 Hz (repeated 5-7 times for 300-500 ms each) induced only a transient potentiation (< 3 min) of excitatory postsynaptic potentials (EPSPs). Persistent potentiation (> 15 min) was induced only when single presynaptic action potentials were synchronously paired with directly induced postsynaptic depolarizing pulses (repeated 50-100 times). Tetanus-induced potentiation of extracellularly evoked EPSPs lasting > 4 min could only be obtained if the EPSP was > 4 mV. Because unitary EPSP amplitudes average approximately 1 mV, we conclude that high-frequency discharge must occur synchronously] in 4-5 CA3 cells for LTP to be induced in a common postsynaptic CA1 cell. Asynchronous pairing of presynaptic action potentials with postsynaptic depolarizing current pulses (preceding each EPSP by 800 ms) depressed both naive and previously potentiated unitary EPSPs. Likewise, homosynaptic LTD of unitary EPSPs was induced when the presynaptic cell was tetanized at 3 Hz for 3 min, regardless of their amplitude (0.3-3.2 mV). Homosynaptic LTD of extracellularly evoked Schaffer collateral EPSPs < 4 mV could be induced if no inhibitory postsynaptic potential was apparent, but was prevented by eliciting a large inhibitory postsynaptic potential or by injection of hyperpolarizing current in the postsynaptic cell. We conclude that cooperative interactions among multiple excitatory inputs are not required for induction of homosynaptic LTD of unitary EPSPs.
Resumo:
Neural crest cells arise from the ectoderm and are first recognizable as discrete cells in the chicken embryo when they emerge from the neural tube. Despite the classical view that neural crest precursors are a distinct population lying between epidermis and neuroepithelium, our results demonstrate that they are not a segregated population. Cell lineage analyses have demonstrated that individual precursor cells within the neural folds can give rise to epidermal, neural crest, and neural tube derivatives. Interactions between the neural plate and epidermis can generate neural crest cells, since juxtaposition of these tissues at early stages results in the formation of neural crest cells at the interface. Inductive interactions between the epidermis and neural plate can also result in "dorsalization" of the neural plate, as assayed by the expression of the Wnt transcripts characteristic of the dorsal neural tube. The competence of the neural plate changes with time, however, such that interaction of early neural plate with epidermis generates only neural crest cells, whereas interaction of slightly older neural plate with epidermis generates neural crest cells and Wnt-expressing cells. At cranial levels, neuroepithelial cells can regulate to generate neural crest cells when the endogenous neural folds are removed, probably via interaction of the remaining neural tube with the epidermis. Taken together, these experiments demonstrate that: (i) progenitor cells in the neural folds are multipotent, having the ability to form multiple ectodermal derivatives, including epidermal, neural crest, and neural tube cells; (ii) the neural crest is an induced population that arises by interactions between the neural plate and the epidermis; and (iii) the competence of the neural plate to respond to inductive interactions changes as a function of embryonic age.
Resumo:
Full activation of T cells requires signaling through the T-cell antigen receptor (TCR) and additional surface molecules interacting with ligands on the antigen-presenting cell. TCR recognition of agonist ligands in the absence of accessory signals frequently results in the induction of a state of unresponsiveness termed anergy. However, even in the presence of costimulation, anergy can be induced by TCR partial agonists. The unique pattern of early receptor-induced tyrosine phosphorylation events induced by partial agonists has led to the hypothesis that altered TCR signaling is directly responsible for the development of anergy. Here we show that anergy induction is neither correlated with nor irreversibly determined by the pattern of early TCR-induced phosphorylation. Rather, it appears to result from the absence of downstream events related to interleukin 2 receptor occupancy and/or cell division. This implies that the anergic state can be manipulated independently of the precise pattern of early biochemical changes following TCR occupancy, a finding with implications for understanding the induction of self-tolerance and the use of partial agonist ligands in the treatment of autoimmune diseases.
Resumo:
The oligodendrocyte is the myelin-forming cell in the central nervous system. Despite the close interaction between axons and oligodendrocytes, there is little evidence that neurons influence myelinogenesis. On the contrary, newly differentiated oligodendrocytes, which mature in culture in the total absence of neurons, synthesize the myelin-specific constituents of oligodendrocytes differentiated in vivo and even form myelin-like figures. Neuronal electrical activity may be required, however, for the appropriate formation of the myelin sheath. To investigate the role of electrical activity on myelin formation, we have used highly specific neurotoxins, which can either block (tetrodotoxin) or increase (alpha-scorpion toxin) the firing of neurons. We show that myelination can be inhibited by blocking the action potential of neighboring axons or enhanced by increasing their electrical activity, clearly linking neuronal electrical activity to myelinogenesis.
Resumo:
Insulin promoter factor 1 (IPF1), a member of the homeodomain protein family, serves an early role in pancreas formation, as evidenced by the lack of pancreas formation in mice carrying a targeted disruption of the IPF1 gene [Jonsson, J., Carlsson, L., Edlund, T. & Edlund, H. (1994) Nature (London) 371, 606-609]. In adults, IPF1 expression is restricted to the beta-cells in the islets of Langerhans. We report here that IPF1 induces expression of a subset of beta-cell-specific genes (insulin and islet amyloid polypeptide) when ectopically expressed in clones of transformed pancreatic islet alpha-cells. In contrast, expression of IPF1 in rat embryo fibroblasts factor failed to induce insulin and islet amyloid polypeptide expression. This is most likely due to the lack of at least one other essential insulin gene transcription factor, the basic helix-loop-helix protein Beta 2/NeuroD, which is expressed in both alpha- and beta-cells. We conclude that IPF1 is a potent transcriptional activator of endogenous insulin genes in non-beta islet cells, which suggests an important role of IPF1 in beta-cell maturation.
Resumo:
The definitive mammalian kidney forms as the result of reciprocal interactions between the ureteric bud epithelium and metanephric mesenchyme. As osteogenic protein 1 (OP-1/bone morphogenetic protein 7), a member of the TGF-beta superfamily of proteins, is expressed predominantly in the kidney, we examined its involvement during metanephric induction and kidney differentiation. We found that OP-1 mRNA is expressed in the ureteric bud epithelium before mesenchymal condensation and is subsequently seen in the condensing mesenchyme and during glomerulogenesis. Mouse kidney metanephric rudiments cultured without ureteric bud epithelium failed to undergo mesenchymal condensation and further epithelialization, while exogenously added recombinant OP-1 was able to substitute for ureteric bud epithelium in restoring the induction of metanephric mesenchyme. This OP-1-induced nephrogenic mesenchyme differentiation follows a developmental pattern similar to that observed in the presence of the spinal cord, a metanephric inducer. Blocking OP-1 activity using either neutralizing antibodies or antisense oligonucleotides in mouse embryonic day 11.5 mesenchyme, cultured in the presence of metanephric inducers or in intact embryonic day 11.5 kidney rudiment, greatly reduced metanephric differentiation. These results demonstrate that OP-1 is required for metanephric mesenchyme differentiation and plays a functional role during kidney development.
Resumo:
Transcriptional regulation by nuclear hormone receptors is thought to involve interactions with putative cofactors that may potentiate receptor function. Here we show that human thyroid hormone receptor alpha purified from HeLa cells grown in the presence of thyroid hormone (T3) is associated with a group of distinct nuclear proteins termed thyroid hormone receptor-associated proteins (TRAPs). In an in vitro system reconstituted with general initiation factors and cofactors (and in the absence of added T3), the "liganded" thyroid hormone receptor (TR)/TRAP complex markedly activates transcription from a promoter template containing T3-response elements. Moreover, whereas the retinoid X receptor is not detected in the TR/TRAP complex, its presence is required for the function of the complex. In contrast, human thyroid hormone receptor alpha purified from cells grown in the absence of T3 lacks the TRAPs and effects only a low level of activation that is dependent on added ligand. These findings demonstrate the ligand-dependent in vivo formation of a transcriptionally active TR-multisubunit protein complex and suggest a role for TRAPs as positive coactivators for gene-specific transcriptional activation.
Resumo:
The Abnormal chromosome 10 (Ab10) in maize causes normally-quiescent blocks of heterochromatin called knobs to function as meiotic centromeres. Under these circumstances genetic markers associated with knobs exhibit meiotic drive, i.e., they are preferentially transmitted to progeny. Here we describe a mutation called suppressor of meiotic drive (smd1) that partially suppresses meiotic drive, and demonstrate that smd1 causes a quantitative reduction in the mobility of knobs on the meiotic spindle. We conclude that Smd1 encodes a product that is necessary for the activation of ectopic centromeres, and that meiotic drive occurs as a consequence of the resulting change in chromosome movement. As a genetic system, Ab10 offers a new and powerful approach for analyzing centromere/kinetochore function.