917 resultados para integrative regions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regional flood frequency techniques are commonly used to estimate flood quantiles when flood data is unavailable or the record length at an individual gauging station is insufficient for reliable analyses. These methods compensate for limited or unavailable data by pooling data from nearby gauged sites. This requires the delineation of hydrologically homogeneous regions in which the flood regime is sufficiently similar to allow the spatial transfer of information. It is generally accepted that hydrologic similarity results from similar physiographic characteristics, and thus these characteristics can be used to delineate regions and classify ungauged sites. However, as currently practiced, the delineation is highly subjective and dependent on the similarity measures and classification techniques employed. A standardized procedure for delineation of hydrologically homogeneous regions is presented herein. Key aspects are a new statistical metric to identify physically discordant sites, and the identification of an appropriate set of physically based measures of extreme hydrological similarity. A combination of multivariate statistical techniques applied to multiple flood statistics and basin characteristics for gauging stations in the Southeastern U.S. revealed that basin slope, elevation, and soil drainage largely determine the extreme hydrological behavior of a watershed. Use of these characteristics as similarity measures in the standardized approach for region delineation yields regions which are more homogeneous and more efficient for quantile estimation at ungauged sites than those delineated using alternative physically-based procedures typically employed in practice. The proposed methods and key physical characteristics are also shown to be efficient for region delineation and quantile development in alternative areas composed of watersheds with statistically different physical composition. In addition, the use of aggregated values of key watershed characteristics was found to be sufficient for the regionalization of flood data; the added time and computational effort required to derive spatially distributed watershed variables does not increase the accuracy of quantile estimators for ungauged sites. This dissertation also presents a methodology by which flood quantile estimates in Haiti can be derived using relationships developed for data rich regions of the U.S. As currently practiced, regional flood frequency techniques can only be applied within the predefined area used for model development. However, results presented herein demonstrate that the regional flood distribution can successfully be extrapolated to areas of similar physical composition located beyond the extent of that used for model development provided differences in precipitation are accounted for and the site in question can be appropriately classified within a delineated region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of climate change are expected to be very severe in arid regions. The Sonora River Basin, in the northwestern state of Sonora, Mexico, is likely to be severely affected. Some of the anticipated effects include precipitation variability, intense storm events, higher overall temperatures, and less available water. In addition, population in Sonora, specifically the capital city of Hermosillo, is increasing at a 1.5% rate and current populations are near 700,000. With the reduction in water availability and an increase in population, Sonora, Mexico is expected to experience severe water resource issues in the near future. In anticipation of these changes, research is being conducted in an attempt to improve water management in the Sonora River Basin, located in the northwestern part of Sonora. This research involves participatory modeling techniques designed to increase water manager awareness of hydrological models and their use as integrative tools for water resource management. This study was conducted as preliminary research for the participatory modeling grant in order to gather useful information on the population being studied. This thesis presents research from thirty-four in-depth interviews with water managers, citizens, and agricultural producers in Sonora, Mexico. Data was collected on perceptions of water quantity and quality in the basin, thoughts on current water management practices, perceptions of climate change and its management, experience with, knowledge of, and trust in hydrological models as water management tools. Results showed that the majority of interviewees thought there was not enough water to satisfy their daily needs. Most respondents also agreed that the water available was of good quality, but that current management of water resources was ineffective. Nearly all interviewees were aware of climate change and thought it to be anthropogenic. May reported experiencing higher temperatures, precipitation changes, and higher water scarcity and attributed those fluctuations to climate change. 65% of interviewees were at least somewhat familiar with hydrological models, though only 28% had ever used them or their output. Even with model usage results being low, 100% of respondents believed hydrological models to be very useful water management tools. Understanding how water, climate change, and hydrological models are perceived by this population of people is essential to improving their water management practices in the face of climate change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Characterizing the spatial scaling and dynamics of convective precipitation in mountainous terrain and the development of downscaling methods to transfer precipitation fields from one scale to another is the overall motivation for this research. Substantial progress has been made on characterizing the space-time organization of Midwestern convective systems and tropical rainfall, which has led to the development of statistical/dynamical downscaling models. Space-time analysis and downscaling of orographic precipitation has received less attention due to the complexities of topographic influences. This study uses multiscale statistical analysis to investigate the spatial scaling of organized thunderstorms that produce heavy rainfall and flooding in mountainous regions. Focus is placed on the eastern and western slopes of the Appalachian region and the Front Range of the Rocky Mountains. Parameter estimates are analyzed over time and attention is given to linking changes in the multiscale parameters with meteorological forcings and orographic influences on the rainfall. Influences of geographic regions and predominant orographic controls on trends in multiscale properties of precipitation are investigated. Spatial resolutions from 1 km to 50 km are considered. This range of spatial scales is needed to bridge typical scale gaps between distributed hydrologic models and numerical weather prediction (NWP) forecasts and attempts to address the open research problem of scaling organized thunderstorms and convection in mountainous terrain down to 1-4 km scales.