994 resultados para inorganic phosphate-solubilizing bacteria
Resumo:
Une des meilleures techniques pour décontaminer l'environnement d'éléments toxiques (comme par exemple le dibenzofuan, DBF et le 4-chlorophenol, 4CP) déposés par l'homme, à bas coûts et sans le perturber considérablement, est sans doute la biorémédiation, et particulièrement la bioaugmentation. Malheureusement, si plusieurs microorganismes ont démontré leur efficacité à dégrader les composés toxiques en conditions de laboratoire, plusieurs tentatives afin de les utiliser dans l'environnement n'ont pas abouti. Ces échecs sont probablement le résultat des pauvres connaissances des réactions de ces mêmes microorganismes dans l'environnement. L'objectif de mon travail a été de mieux comprendre les réponses de ces bactéries au niveau de leurs gènes lorsqu'elles sont introduites ou prospèrent dans des conditions plus proches de la réalité, mais encore suffisamment contrôlées pour pouvoir élucider leur comportement. Le fait de résister à des conditions de sécheresse a été considéré en tant que facteur clé dans la survie des bactéries amenées à être utilisées pour la biorémédiation; cela implique une série de mécanismes utilisés par la cellule pour faire face au stress hydrique. Le chapitre II, par une approche métagénomique, compare les réactions de trois souches prometteuses pour la biorémédiation (Arthrobacter chlorophenolicus A6, Sphingomonas wittichii RW1 and Pseudomonas veronii 1YdBTEX2) vis-à-vis du stress hydrique simulé en conditions de laboratoire. L'objectif ici est de découvrir et de décrire les stratégies de résistance au stress, communes ou spécifiques, employées par les bactéries. Mes résultats montrent que les trois souches ont des sensibilités différentes au stress hydrique. Entre les traits communs trouvés, il y a une diminution de l'expression des gènes flagellaires ainsi qu'une augmentation de l'expression de solutes compatibles, mais qui sont souche-spécifiques. J'ai étudié plus en détail la réponse génomique de RW1 par rapport aux inoculations ainsi que sa croissance dans le sable contaminé et non-stérile (chapitre III), et je les ai comparé à des cultures en milieu liquide. Mes résultats indiquent que RW1 peut résister efficacement et peut croître dans des conditions presque sèches et peut également dégrader le contaminant (DBF, dans le cas présent) si les pré-cultures sont réalisées dans le même type de contaminant. Par contre, notre hypothèse du chapitre II se révèle fausse car le comportement de RW1 est très diffèrent de celui observé dans des conditions avec stress hydrique induit par l'addition de sel ou de PEG. Plus intéressant, les réponses de RW1 en milieu liquide sont très différentes de celles observées dans le sable, révélant ainsi que cette souche peut reconnaître le milieu dans lequel elle se trouve. Les mêmes expériences en sable contaminé, cette fois-ci avec 4CP, ont été réalisées pour A6 (chapitre IV) dans l'espoir de compléter la comparaison entre le stress hydrique et l'adaptation dans le sol. Malheureusement, il n'a pas été possible d'obtenir d'échantillons de bonne qualité pour les hybridations des microarrays afin d'étudier la réponse transcriptionnelle dans les différentes phases de croissance dans le sable (contaminé ou non). Toutefois, j'ai appris qu'Arthrobacter ne peut pas croitre dans les sols hautement contaminés si les conditions du sol sont très sèches, elles ont en effet besoin de suffisamment d'eau pour dégrader des quantités importantes de 4CP. Ces observations dirigent l'attention sur le fait que les études sur l'efficacité de l'inoculation de bactéries doivent être testées dans des conditions le plus proche possible de l'environnement ciblé, tout comme les concentrations optimales pour l'inoculum. Finalement, nous avons étudié le comportement de A6 dans la phytosphère avec deux dégrés d'humidité (chapitre V). A6 ne montre pas de réaction particulière face aux changements d'humidité, et à nouveau, ces réponses ne peuvent être liées aux changements d'expression des gènes observées dans les conditions de stress hydrique simulées. Cette étude a permis d'identifier la présence de composés phénoliques dans les feuilles qui peuvent potentiellement améliorer les propriétés de dégradation ou qui permettent d'effectuer de façon plus rapide la réaction de dégradation des contaminants dans un processus de phytoremédiation par A. chlorophenolicus.
Resumo:
The European Society for the study of Chlamydia, Coxiella, Anaplasma and Rickettsia (ESCCAR) held his triennial international meeting in Lausanne. This meeting gathered 165 scientists from 28 countries and all 5 continents, allowing efficient networking and major scientific exchanges. Topics covered include molecular and cellular microbiology, genomics, as well as epidemiology, veterinary and human medicine. Several breakthroughs have been revealed at the meeting, such as (i) the presence of CRISPR (the "prokaryotic immune system") in chlamydiae, (ii) an Anaplasma effector involved in host chromatin remodelling, (iii) the polarity of the type III secretion system of chlamydiae during the entry process revealed by cryo-electron tomography. Moreover, the ESCCAR meeting was a unique opportunity to be exposed to cutting-edge science and to listen to comprehensive talks on current hot topics.
Resumo:
The taxonomic composition of egg-associated microbial communities can play a crucial role in the development of fish embryos. In response, hosts increasingly influence the composition of their associated microbial communities during embryogenesis, as concluded from recent field studies and laboratory experiments. However, little is known about the taxonomic composition and the diversity of egg-associated microbial communities within ecosystems; e.g., river networks. We sampled late embryonic stages of naturally spawned brown trout at nine locations within two different river networks and applied 16S rRNA pyrosequencing to describe their bacterial communities. We found no evidence for a significant isolation-by-distance effect on the composition of bacterial communities, and no association between neutral genetic divergence of fish host (based on 11 microsatellites) and phylogenetic distances of the composition of their associated bacterial communities. We characterized core bacterial communities on brown trout eggs and compared them to corresponding water samples with regard to bacterial composition and its presumptive function. Bacterial diversity was positively correlated with water temperature at the spawning locations. We discuss this finding in the context of the increased water temperatures that have been recorded during the last 25 years in the study area.
Resumo:
This paper reports the method development for the simultaneous determination of methylmercury MeHgþ) and inorganic mercury (iHg) species in seafood samples. The study focused on the extraction and quantification of MeHgþ (the most toxic species) by liquid chromatography coupled to on-line UV irradiation and cold vapour atomic fluorescence spectroscopy (LC-UV-CV-AFS), using HCl 4 mol/L as the extractant agent. Accuracy of the method has been verified by analysing three certified reference materials and different spiked samples. The values found for total Hg and MeHgþ for the CRMs did not differ significantly from certified values at a 95% confidence level, and recoveries between 85% and 97% for MeHgþ, based on spikes, were achieved. The detection limits (LODs) obtained were 0.001 mg Hg/kg for total mercury, 0.0003 mg Hg/kg for MeHgþ and 0.0004 mg Hg/kg for iHg. The quantification limits (LOQs) established were 0.003 mg Hg/kg for total mercury, 0.0010 mg Hg/kg for MeHgþ and 0.0012 mg Hg/kg for iHg. Precision for each mercury species was established, being 12% in terms of RSD in all cases. Finally, the developed method was applied to 24 seafood samples from different origins and total mercury contents. The concentrations for Total Hg, MeHg and iHg ranged from 0.07 to 2.33, 0.003-2.23 and 0.006-0.085 mg Hg/kg, respectively. The established analytical method allows to obtain results for mercury speciation in less than 1 one hour including both, sample pretreatment and measuring step.
Resumo:
The Chlamydiales order is composed of nine families of strictly intracellular bacteria. Among them, Chlamydia trachomatis, C. pneumoniae, and C. psittaci are established human pathogens, whereas Waddlia chondrophila and Parachlamydia acanthamoebae have emerged as new pathogens in humans. However, despite their medical importance, their biodiversity and ecology remain to be studied. Even if arthropods and, particularly, ticks are well known to be vectors of numerous infectious agents such as viruses and bacteria, virtually nothing is known about ticks and chlamydia. This study investigated the prevalence of Chlamydiae in ticks. Specifically, 62,889 Ixodes ricinus ticks, consolidated into 8,534 pools, were sampled in 172 collection sites throughout Switzerland and were investigated using pan-Chlamydiales quantitative PCR (qPCR) for the presence of Chlamydiales DNA. Among the pools, 543 (6.4%) gave positive results and the estimated prevalence in individual ticks was 0.89%. Among those pools with positive results, we obtained 16S rRNA sequences for 359 samples, allowing classification of Chlamydiales DNA at the family level. A high level of biodiversity was observed, since six of the nine families belonging to the Chlamydiales order were detected. Those most common were Parachlamydiaceae (33.1%) and Rhabdochlamydiaceae (29.2%). "Unclassified Chlamydiales" (31.8%) were also often detected. Thanks to the huge amount of Chlamydiales DNA recovered from ticks, this report opens up new perspectives on further work focusing on whole-genome sequencing to increase our knowledge about Chlamydiales biodiversity. This report of an epidemiological study also demonstrates the presence of Chlamydia-related bacteria within Ixodes ricinus ticks and suggests a role for ticks in the transmission of and as a reservoir for these emerging pathogenic Chlamydia-related bacteria.
Resumo:
Osteoclasts are multinucleated bone degrading cells. Phosphate is an important constituent of mineralized bone and released in significant quantities during bone resorption. Molecular contributors to phosphate transport during the resorptive activity of osteoclasts have been controversially discussed. This study aimed at deciphering the role of sodium-dependent phosphate transporters during osteoclast differentiation and bone resorption. Our studies reveal RANKL-induced differential expression of sodium-dependent phosphate transport protein IIa (NaPi-IIa) transcript and protein during osteoclast development, but no expression of the closely related NaPi-IIb and NaPi-IIc SLC34 family isoforms. In vitro studies employing NaPi-IIa-deficient osteoclast precursors and mature osteoclasts reveal that NaPi-IIa is dispensable for bone resorption and osteoclast differentiation. These results are supported by the analysis of structural bone parameters by high-resolution microcomputed tomography that yielded no differences between adult NaPi-IIa WT and KO mice. By contrast, both type III sodium-dependent phosphate transporters Pit-1 and Pit-2 were abundantly expressed throughout osteoclast differentiation, indicating that they are the relevant sodium-dependent phosphate transporters in osteoclasts and osteoclast precursors. We conclude that phosphate transporters of the SLC34 family have no role in osteoclast differentiation and function and propose that Pit-dependent phosphate transport could be pivotal for bone resorption and should be addressed in further studies.
Resumo:
Gram-negative bacteria represent a major group of pathogens that infect all eukaryotes from plants to mammals. Gram-negative microbe-associated molecular patterns include lipopolysaccharides and peptidoglycans, major immunostimulatory determinants across phyla. Recent advances have furthered our understanding of Gram-negative detection beyond the well-defined pattern recognition receptors such as TLR4. A B-type lectin receptor for LPS and Lysine-motif containing receptors for peptidoglycans were recently added to the plant arsenal. Caspases join the ranks of mammalian cytosolic immune detectors by binding LPS, and make TLR4 redundant for septic shock. Fascinating bacterial evasion mechanisms lure the host into tolerance or promote inter-bacterial competition. Our review aims to cover recent advances on bacterial messages and host decoding systems across phyla, and highlight evolutionarily recurrent strategies.
Resumo:
Boletus edulis Bull. is one of the most economically and gastronomically valuable fungi worldwide. Sporocarp production normally occurs when symbiotically associated with a number of tree species in stands over 40 years old, but it has also been reported in 3-year-old Cistus ladanifer L. shrubs. Efforts toward the domestication of B. edulis have thus focused on successfully generating C. ladanifer seedlings associated with B. edulis under controlled conditions. Microorganisms have an important role mediating mycorrhizal symbiosis, such as some bacteria species which enhance mycorrhiza formation (mycorrhiza helper bacteria). Thus, in this study, we explored the effect that mycorrhiza helper bacteria have on the efficiency and intensity of the ectomycorrhizal symbiosis between C. ladanifer and B. edulis. The aim of this work was to optimize an in vitro protocol for the mycorrhizal synthesis of B. edulis with C. ladanifer by testing the effects of fungal culture time and coinoculation with the helper bacteria Pseudomonas fluorescens Migula. The results confirmed successful mycorrhizal synthesis between C. ladanifer and B. edulis. Coinoculation of B. edulis with P. fluorescens doubled within-plant mycorrhization levels although it did not result in an increased number of seedlings colonized with B. edulis mycorrhizae. B. edulis mycelium culture time also increased mycorrhization levels but not the presence of mycorrhizae. These findings bring us closer to controlled B. edulis sporocarp production in plantations.
Resumo:
The response of shoots to phosphate (Pi) deficiency implicates long-distance communication between roots and shoots, but the participating components are poorly understood. We have studied the topology of the Arabidopsis (Arabidopsis thaliana) PHOSPHATE1 (PHO1) Pi exporter and defined the functions of its different domains in Pi homeostasis and signaling. The results indicate that the amino and carboxyl termini of PHO1 are both oriented toward the cytosol and that the protein spans the membrane twice in the EXS domain, resulting in a total of six transmembrane α-helices. Using transient expression in Nicotiana benthamiana leaf, we demonstrated that the EXS domain of PHO1 is essential for Pi export activity and proper localization to the Golgi and trans-Golgi network, although the EXS domain by itself cannot mediate Pi export. In contrast, removal of the amino-terminal hydrophilic SPX domain does not affect the Pi export capacity of the truncated PHO1 in N. benthamiana. While the Arabidopsis pho1 mutant has low shoot Pi and shows all the hallmarks associated with Pi deficiency, including poor shoot growth and overexpression of numerous Pi deficiency-responsive genes, expression of only the EXS domain of PHO1 in the roots of the pho1 mutant results in a remarkable improvement of shoot growth despite low shoot Pi. Transcriptomic analysis of pho1 expressing the EXS domain indicates an attenuation of the Pi signaling cascade and the up-regulation of genes involved in cell wall synthesis and the synthesis or response to several phytohormones in leaves as well as an altered expression of genes responsive to abscisic acid in roots.
Resumo:
The synthesis of 1-deoxy-D-xylulose 5-phosphate (DXP), catalyzed by the enzyme DXP synthase (DXS), represents a key regulatory step of the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway for isoprenoid biosynthesis. In plants DXS is encoded by small multigene families that can be classified into, at least, three specialized subfamilies. Arabidopsis thaliana contains three genes encoding proteins with similarity to DXS, including the well-known DXS1/CLA1 gene, which clusters within subfamily I. The remaining proteins, initially named DXS2 and DXS3, have not yet been characterized. Here we report the expression and functional analysis of A. thaliana DXS2. Unexpectedly, the expression of DXS2 failed to rescue Escherichia coli and A. thaliana mutants defective in DXS activity. Coherently, we found that DXS activity was negligible in vitro, being renamed as DXL1 following recent nomenclature recommendation. DXL1 is targeted to plastids as DXS1, but shows a distinct expression pattern. The phenotypic analysis of a DXL1 defective mutant revealed that the function of the encoded protein is not essential for growth and development. Evolutionary analyses indicated that DXL1 emerged from DXS1 through a recent duplication apparently specific of the Brassicaceae lineage. Divergent selective constraints would have affected a significant fraction of sites after diversification of the paralogues. Furthermore, amino acids subjected to divergent selection and likely critical for functional divergence through the acquisition of a novel, although not yet known, biochemical function, were identified. Our results provide with the first evidences of functional specialization at both the regulatory and biochemical level within the plant DXS family.
Resumo:
Resistance to semi-dry environments has been considered a crucial trait for superior growth and survival of strains used for bioaugmentation in contaminated soils. In order to compare water stress programmes, we analyse differential gene expression among three phylogenetically different strains capable of aromatic compound degradation: Arthrobacter chlorophenolicus A6, Sphingomonas wittichii RW1 and Pseudomonas veronii 1YdBTEX2. Standardized laboratory-induced water stress was imposed by shock exposure of liquid cultures to water potential decrease, induced either by addition of solutes (NaCl, solute stress) or by addition of polyethylene glycol (matric stress), both at absolute similar stress magnitudes and at those causing approximately similar decrease of growth rates. Genome-wide differential gene expression was recorded by micro-array hybridizations. Growth of P. veronii 1YdBTEX2 was the most sensitive to water potential decrease, followed by S. wittichii RW1 and A. chlorophenolicus A6. The number of genes differentially expressed under decreasing water potential was lowest for A. chlorophenolicus A6, increasing with increasing magnitude of the stress, followed by S. wittichii RW1 and P. veronii 1YdBTEX2. Gene inspection and gene ontology analysis under stress conditions causing similar growth rate reduction indicated that common reactions among the three strains included diminished expression of flagellar motility and increased expression of compatible solutes (which were strain-specific). Furthermore, a set of common genes with ill-defined function was found between all strains, including ABC transporters and aldehyde dehydrogenases, which may constitute a core conserved response to water stress. The data further suggest that stronger reduction of growth rate of P. veronii 1YdBTEX2 under water stress may be an indirect result of the response demanding heavy NADPH investment, rather than the presence or absence of a suitable stress defence mechanism per se.
Resumo:
Obligate or facultative intracellular bacteria are fastidious organisms that do not or poorly grow on conventional culture media. Some of them may be the cause of frequent and potentially severe infections, such as tuberculosis (Myco- bacterium tuberculosis), community-acquired respiratory infections (Legionella spp., Mycoplasma pneumoniae, Chlamydia pneumoniae) or blood culture-negative endocarditis (Coxiella burnetii, Bartonella spp., Tropheryma whipplei). The objective of this paper is to provide a comprehensive summary of the available and recommended diagnostic tests for the detection of these fastidious organisms in clinical practice.
Resumo:
Epitheliocystis is an infectious disease affecting gills and skin of various freshwater and marine fishes, associated with high mortality and reduced growth of survivors. Candidatus Piscichlamydia salmonis and Clavochlamydia salmonicola have recently been identified as aetiological agents of epitheliocystis in Atlantic Salmon. In addition, several other members of the Chlamydiales order have been identified in other fish species. To clarify the pathogenicity of Chlamydia-like organisms towards fishes, we investigated the permissivity of two fish cell lines, EPC-175 (Fathead Minnow) and RTG-2 (rainbow trout) to three Chlamydia-related bacteria: Waddlia chondrophila, Parachlamydia acanthamoebae and Estrella lausannensis. Quantitative PCR and immunofluorescence demonstrated that W. chondrophila and, to a lesser extent, E. lausannensis were able to replicate in the two cell lines tested. Waddlia chondrophila multiplied rapidly in its host cell and a strong cytopathic effect was observed. During E. lausannensis infection, we observed a limited replication of the bacteria not followed by host cell lysis. Very limited replication of P. acanthamoebae was observed in both cell lines tested. Given its high infectivity and cytopathic effect towards fish cell lines, W. chondrophila represents the most interesting Chlamydia-related bacteria to be used to develop an in vivo model of epitheliocystis disease in fishes.
Resumo:
Seabirds act as natural reservoirs to Lyme borreliosis spirochetes and may play a significant role in the global circulation of these pathogens. While Borrelia burgdorferi sensu lato (Bbsl) has been shown to occur in ticks collected from certain locations in the North Pacific, little is known about interspecific differences in exposure within the seabird communities of this region. We examined the prevalence of anti-Bbsl antibodies in 805 individuals of nine seabird species breeding across the North Pacific. Seroprevalence varied strongly among species and locations. Murres (Uria spp.) showed the highest antibody prevalence and may play a major role in facilitating Bbsl circulation at a worldwide scale. Other species showed little or no signs of exposure, despite being present in multispecific colonies with seropositive birds. Complex dynamics may be operating in this wide scale, natural hostparasite system, possibly mediated by the host immune system and host specialization of the tick vector.
Resumo:
The present paper is a review about basic principles of the molecular mechanics that is the most important tool used in molecular modeling area, and their applications to the calculation of the relative stability and chemical reactivity of organometalic and coordination compounds. We show how molecular mechanics can be successfully applied to a wide variety of inorganic systems.