989 resultados para ink reduction software


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measured drop speeds from a range of industrial drop-on-demand (DoD) ink-jet print head designs scale with the predictions of very simple physical models and results of numerical simulations. The main drop/jet speeds at a specified stand-off depend on fluid properties, nozzle exit diameter, and print head drive amplitude for fixed waveform timescales. Drop speeds from the Xaar, Spectra Dimatix, and MicroFab DoD print heads tested with (i) Newtonian, (ii) weakly elastic, and (iii) highly shear-thinning fluids all show a characteristic linear rise with drive voltage (setting) above an apparent threshold drive voltage. Jetting, simple modeling approaches, and numerical simulations of Newtonian fluids over the typical DoD printing range of surface tensions and viscosities were studied to determine how this threshold drive value and the slope of the characteristic linear rise depend on these fluid properties and nozzle exit area. The final speed is inversely proportional to the nozzle exit area, as expected from volume conservation. These results should assist specialist users in the development and optimization of DoD applications and print head design. For a given density, the drive threshold is determined primarily by viscosity, and the constant of proportionality k linking speed with drive above a drive threshold becomes independent of viscosity and surface tension for more viscous DoD fluid jetting. © 2013 Society for Imaging Science and Technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the modern engineering design cycle the use of computational tools becomes a neces- sity. The complexity of the engineering systems under consideration for design increases dramatically as the demands for advanced and innovative design concepts and engineering products is expanding. At the same time the advancements in the available technology in terms of computational resources and power, as well as the intelligence of the design software, accommodate these demands and make them a viable approach towards the chal- lenge of real-world engineering problems. This class of design optimisation problems is by nature multi-disciplinary. In the present work we establish enhanced optimisation capabil- ities within the Nimrod/O tool for massively distributed execution of computational tasks through cluster and computational grid resources, and develop the potential to combine and benefit from all the possible available technological advancements, both software and hardware. We develop the interface between a Free Form Deformation geometry manage- ment in-house code with the 2D airfoil aerodynamic efficiency evaluation tool XFoil, and the well established multi-objective heuristic optimisation algorithm NSGA-II. A simple airfoil design problem has been defined to demonstrate the functionality of the design sys- tem, but also to accommodate a framework for future developments and testing with other state-of-the-art optimisation algorithms such as the Multi-Objective Genetic Algorithm (MOGA) and the Multi-Objective Tabu Search (MOTS) techniques. Ultimately, heav- ily computationally expensive industrial design cases can be realised within the presented framework that could not be investigated before. © 2012 by the authors. Published by the American Institute of Aeronautics and Astronautics, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the modern engineering design cycle the use of computational tools becomes a necessity. The complexity of the engineering systems under consideration for design increases dramatically as the demands for advanced and innovative design concepts and engineering products is expanding. At the same time the advancements in the available technology in terms of computational resources and power, as well as the intelligence of the design software, accommodate these demands and make them a viable approach towards the challenge of real-world engineering problems. This class of design optimisation problems is by nature multi-disciplinary. In the present work we establish enhanced optimisation capabilities within the Nimrod/O tool for massively distributed execution of computational tasks through cluster and computational grid resources, and develop the potential to combine and benefit from all the possible available technological advancements, both software and hardware. We develop the interface between a Free Form Deformation geometry management in-house code with the 2D airfoil aerodynamic efficiency evaluation tool XFoil, and the well established multi-objective heuristic optimisation algorithm NSGA-II. A simple airfoil design problem has been defined to demonstrate the functionality of the design system, but also to accommodate a framework for future developments and testing with other state-of-the-art optimisation algorithms such as the Multi-Objective Genetic Algorithm (MOGA) and the Multi-Objective Tabu Search (MOTS) techniques. Ultimately, heavily computationally expensive industrial design cases can be realised within the presented framework that could not be investigated before. ©2012 AIAA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dynamism and uncertainty are real challenges for present day manufacturing enterprises (MEs). Reasons include: an increasing demand for customisation, reduced time to market, shortened product life cycles and globalisation. MEs can reduce competitive pressure by becoming reconfigurable and change-capable. However, modern manufacturing philosophies, including agile and lean, must complement the application of reconfigurable manufacturing paradigms. Choosing and applying the best philosophies and techniques is very difficult as most MEs deploy complex and unique configurations of processes and resource systems, and seek economies of scope and scale in respect of changing and distinctive product flows. It follows that systematic methods of achieving model driven reconfiguration and interoperation of component based manufacturing systems are required to design, engineer and change future MEs. This thesis, titled Enhanced Integrated Modelling Approach to Reconfiguring Manufacturing Enterprises , introduces the development and prototyping a model-driven environment for the design, engineering, optimisation and control of the reconfiguration of MEs with an embedded capability to handle various types of change. The thesis describes a novel systematic approach, namely enhanced integrated modelling approach (EIMA), in which coherent sets of integrated models are created that facilitates the engineering of MEs especially their production planning and control (PPC) systems. The developed environment supports the engineering of common types of strategic, tactical and operational processes found in many MEs. The EIMA is centred on the ISO standardised CIMOSA process modelling approach. Early study led to the development of simulation models during which various CIMOSA shortcomings were observed, especially in its support for aspects of ME dynamism. A need was raised to structure and create semantically enriched models hence forming an enhanced integrated modelling environment. The thesis also presents three industrial case examples: (1) Ford Motor Company; (2) Bradgate Furniture Manufacturing Company; and (3) ACM Bearings Company. In order to understand the system prior to realisation of any PPC strategy, multiple process segments of any target organisation need to be modelled. Coherent multi-perspective case study models are presented that have facilitated process reengineering and associated resource system configuration. Such models have a capability to enable PPC decision making processes in support of the reconfiguration of MEs. During these case studies, capabilities of a number of software tools were exploited such as Arena®, Simul8®, Plant Simulation®, MS Visio®, and MS Excel®. Case study results demonstrated effectiveness of the concepts related to the EIMA. The research has resulted in new contributions to knowledge in terms of new understandings, concepts and methods in following ways: (1) a structured model driven integrated approach to the design, optimisation and control of future reconfiguration of MEs. The EIMA is an enriched and generic process modelling approach with capability to represent both static and dynamic aspects of an ME; and (2) example application cases showing benefits in terms of reduction in lead time, cost and resource load and in terms of improved responsiveness of processes and resource systems with a special focus on PPC; (3) identification and industrial application of a new key performance indicator (KPI) known as P3C the measuring and monitoring of which can aid in enhancing reconfigurability and responsiveness of MEs; and (4) an enriched modelling concept framework (E-MUNE) to capture requirements of static and dynamic aspects of MEs where the conceptual framework has the capability to be extended and modified according to the requirements. The thesis outlines key areas outlining a need for future research into integrated modelling approaches, interoperation and updating mechanisms of partial models in support of the reconfiguration of MEs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Against a background of increasing energy demand and rising fuel prices, hybrid-electric propulsion systems (HEPS) have the potential to significantly reduce fuel consumption in the aviation industry, particularly in the lighter sectors. By taking advantage of both Electric Motor (EM) and Internal Combustion Engine (ICE), HEPS provide not only a benefit in fuel saving but also a reduction in take-off noise and the emission levels. This research considers the design and sizing process of a hybrid-electric propulsion system for a single-seat demonstrator aircraft, the experimental derivation of the ICE map and the EM parameters. In addition to the experimental data, a novel modeling approach including several linked desktop PC software packages is presented to analyze and optimize hybrid-electric technology for aircraft. Further to the analysis of a parallel hybrid-electric, mid-scale aircraft, this paper also presents a scaling approach for a 20 kg UAV and a 50 tonne inter-city airliner. At the smaller scale, two different mission profiles are analyzed: an ISR mission profile, where the simulation routine optimizes the component size of the hybrid-electric propulsion system with respect to fuel saving, and a maximum duration profile; where the flight endurance is determined as a function of payload weight. At the larger scale, the performance of a 50 tonne inter-city airliner is modeled, based on a hybrid-electric gas-turbine, assuming a range of electric boost powers and battery masses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction of a turbulent eddy with a semi-infinite, poroelastic edge is examined with respect to the effects of both elasticity and porosity on the efficiency of aerodynamic noise generation. The edge is modelled as a thin plate poroelastic plate, which is known to admit fifth-, sixth-, and seventh-power noise dependences on a characteristic velocity U of the turbulent eddy. The associated acoustic scattering problem is solved using the Wiener-Hopf technique for the case of constant plate properties. For the special cases of porous-rigid and impermeable-elastic plate conditions, asymptotic analysis of the Wiener- Hopf kernel function furnishes the parameter groups and their ranges where U5, U6, and U7 behaviours are expected to occur. Results from this analysis attempt to help guide the search for passive edge treatments to reduce trailing-edge noise that are inspired by the wing features of silently flying owls. Furthermore, the appropriateness of the present model to the owl noise problem is discussed with respect to the acoustic frequencies of interest, wing chord-lengths, and foraging behaviour across a representative set of owl species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Turbine design engineers have to ensure that film cooling can provide sufficient protection to turbine blades from the hot mainstream gas, while keeping the losses low. Film cooling hole design parameters include inclination angle (a), compound angle (b), hole inlet geometry, and hole exit geometry. The influence of these parameters on aerodynamic loss and net heat flux reduction is investigated, with loss being the primary focus. Low-speed flat plate experiments have been conducted at momentum flux ratios of IR=0.16, 0.64, and 1.44. The film cooling aerodynamic mixing loss, generated by the mixing of mainstream and coolant, can be quantified using a three-dimensional analytical model that has been previously reported by the authors. The model suggests that for the same flow conditions, the aerodynamic mixing loss is the same for holes with different a and b but with the same angle between the mainstream and coolant flow directions (angle k). This relationship is assessed through experiments by testing two sets of cylindrical holes with different a and b: one set with k=35 deg, and another set with k=60 deg. The data confirm the stated relationship between α, β, k and the aerodynamic mixing loss. The results show that the designer should minimize k to obtain the lowest loss, but maximize b to achieve the best heat transfer performance. A suggestion on improving the loss model is also given. Five different hole geometries (α=35.0 deg, β=0 deg) were also tested: cylindrical hole, trenched hole, fan-shaped hole, D-Fan, and SD-Fan. The D-Fan and the SD-Fan have similar hole exits to the fan-shaped hole but their hole inlets are laterally expanded. The external mixing loss and the loss generated inside the hole are compared. It was found that the D-Fan and the SD-Fan have the lowest loss. This is attributed to their laterally expanded hole inlets, which lead to significant reduction in the loss generated inside the holes. As a result, the loss of these geometries is≈50% of the loss of the fan-shaped hole at IR=0.64 and 1.44. © 2013 by ASME.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transient crosstalk in a phase-only liquid crystal on silicon (LCOS) based wavelength selective switch using a Fourier transform setup was investigated. Its origin was identified using an in situ test procedure and found to be related to the transient phase patterns displayed by the LCOS device during the switching. Two different methods were proposed to reduce the transient crosstalk without the need to modify the optics or electronics in use. Experimental results show both methods are able to reduce the worst-case transient crosstalk by at least 5 dB. © 1983-2013 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate how the Gaussian process regression approach can be used to efficiently reconstruct free energy surfaces from umbrella sampling simulations. By making a prior assumption of smoothness and taking account of the sampling noise in a consistent fashion, we achieve a significant improvement in accuracy over the state of the art in two or more dimensions or, equivalently, a significant cost reduction to obtain the free energy surface within a prescribed tolerance in both regimes of spatially sparse data and short sampling trajectories. Stemming from its Bayesian interpretation the method provides meaningful error bars without significant additional computation. A software implementation is made available on www.libatoms.org.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blooms of cyanobacteria, or blue-greens, are known to produce chemicals, such as microcystins, which can be toxic to aquatic and terrestrial organisms. Although previous studies have examined the fate of microcystins in freshwater lakes, primary elimination pathways and factors affecting degradation and loss have not been fully explained. The goal of the present study was to explore sources of algal toxins and investigate the distribution and biodegradation of microcystins in water and sediment through laboratory and field analyses. Water and sediment samples were collected monthly from several locations in Lake Taihu from February 2005 to January 2006. Samples were analyzed for the presence of microcystin. Water and sediment were also used in laboratory studies to determine microcystin degradation rates by spiking environmental samples with known concentrations of the chemical and observing concentration changes over time. Some water samples were found to efficiently degrade microcystins. Microcystin concentrations dropped faster in water collected immediately above lake sediment (overlying water). Degradation in sediments was higher than in water. Based on spatial distribution analyses of microcystin in Lake Taihu, higher concentrations (relative to water concentrations) of the chemical were found in lake sediments. These data suggest that sediments play a critical role in microcystin degradation in aquatic systems. The relatively low levels of microcystins found in the environment are most likely due to bacterial biodegradation. Sediments play a crucial role as a source (to the water column) of bio-degrading bacteria and as a carbon-rich environment for bacteria to proliferate and metabolize microcystin and other biogenic toxins produced by cyanobacteria. These, and other, data provide important information that may be applied to management strategies for improvement of water quality in lakes, reservoirs and other water bodies. (C) 2007 Elsevier Ltd. All rights reserved.