982 resultados para in vitro cytogenetical technique


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Respiratory syncytial virus (RSV) is the major viral cause of severe pulmonary disease in young infants worldwide. However, the mechanisms by which RSV causes disease in humans remain poorly understood. To help bridge this gap, we developed an ex vivo/in vitro model of RSV infection based on well-differentiated primary pediatric bronchial epithelial cells (WD-PBECs), the primary targets of RSV infection in vivo. Our RSV/WD-PBEC model demonstrated remarkable similarities to hallmarks of RSV infection in infant lungs. These hallmarks included restriction of infection to noncontiguous or small clumps of apical ciliated and occasional nonciliated epithelial cells, apoptosis and sloughing of apical epithelial cells, occasional syncytium formation, goblet cell hyperplasia/metaplasia, and mucus hypersecretion. RSV was shed exclusively from the apical surface at titers consistent with those in airway aspirates from hospitalized infants. Furthermore, secretion of proinflammatory chemokines such as CXCL10, CCL5, IL-6, and CXCL8 reflected those chemokines present in airway aspirates. Interestingly, a recent RSV clinical isolate induced more cytopathogenesis than the prototypic A2 strain. Our findings indicate that this RSV/WD-PBEC model provides an authentic surrogate for RSV infection of airway epithelium in vivo. As such, this model may provide insights into RSV pathogenesis in humans that ultimately lead to successful RSV vaccines or therapeutics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article describes the discovery and development of the first highly selective, small molecule antagonist of the muscarinic acetylcholine receptor subtype I (mAChR1 or M-1). An M-1 functional, cell-based, calcium-mobilization assay identified three distinct chemical series with initial selectivity for M-1 versus M-4. An iterative parallel synthesis approach was employed to optimize all three series in parallel, which led to the development of novel microwave-assisted chemistry and provided important take home lessons for probe development projects. Ultimately, this effort produced VU0255035, a potent (IC50 = 130 nM) and selective (>75-fold vs. M-2-M-5 and >10 mu M vs. a panel of 75 GPCRs, ion channels and transporters) small molecule M-1 antagonist. Further profiling demonstrated that VU0255035 was centrally penetrant (Brain(AUC)/Plasma(AUC) of 0.48) and active in vivo, rendering it acceptable as both an in vitro and in vivo MLSCN/MLPCN probe molecule for studying and dissecting M-1 function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inhibitors of Gly transporter type-1 (GlyT1) for the treatment of schizophrenia have been pursued on the basis of the NMDA receptor (R) hypofunction hypothesis, which stems largely from the observation that NMDAR antagonists induce symptoms that more closely mimic those characteristic of schizophrenia than do other classes of psychotic agents. GlyT1 is responsible for uptake of synaptic Gly, an NMDAR co-agonist amino acid, in neuronal populations throughout the forebrain. GlyT1 inhibition thereby potentiates NMDAR activity by increasing synaptic Gly levels. Correspondingly, a large body of data suggests that GlyT1 inhibitors likely confer more comprehensive symptom alleviation than current antipsychotics. To date, a number of small-molecule GlyT1 inhibitors have been reported by the pharmaceutical industry. Developments in the discovery and characterization of GlyT1 inhibitors are discussed in this review.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives This study describes the in-situ gelling of econazole nitrate containing thermosensitive polymers composed of poloxamer 407 and 188 as a novel treatment platform for vaginal candidiasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose. This study reports the effects of hexetidine (Oraldene(TM)) on two virulence attributes of Candida albicans, namely, in vitro and ex vivo adherence of yeast cells to buccal epithelial cells (BEG) and in vitro morphogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Novel mucoadhesive formulations containing hydroxyethylcellulose (HEC; 3 and 5%, w/w) or Carbopol (3 and 5%, w/w), polycarbophil (PC; 1 and 3%, w/w) and metronidazole (5%, w/w) at pH 6.8 were designed for the treatment of periodontal diseases. Each formulation was characterised in terms of hardness, compressibility, adhesiveness and cohesiveness (using Texture Profile Analysis), drug release, adhesion to a mucin disc (measured as a detachment force using the texture analyser in tensile mode) and, finally, syringeability (using the texture analyser in compression mode). Drug release from all formulations was non-diffusion controlled. Drug release was significantly decreased as the concentration of each polymeric component was increased, due to both the concomitant increased viscosity of the formulations and, additionally, the swelling kinetics of PC following contact with dissolution fluid. Increasing the concentrations of each polymeric component significantly increased formulation hardness, compressibility, adhesiveness, mucoadhesion and syringeability, yet decreased cohesiveness. Increased product hardness, compressibility and syringeability were due to polymeric effects on formulation viscosity. The effects on cohesiveness may be explained both by increased viscosity and also by the increasing semi-solid nature of products containing 5% HEC or Carbopol and PC (1 or 3%). The observations concerning formulation adhesiveness/mucoadhesion illustrate the adhesive nature of each polymeric component. Greatest adhesion was noted in formulations where neutralisation of PC was maximally suppressed. For the most part, increased time of contact between formulation and mucin significantly increased the required force of detachment, due to the greater extent of mucin polymer hydration and interpenetration with the formulations. Significant statistical interactions were observed between the effects of each polymer on drug release and mechanical/mucoadhesive properties. These interactions may be explained by formulatory effects on the extent of swelling of PC. In conclusion, the formulations described offered a wide range of mechanical and drug release characteristics. Formulations containing HEC exhibited superior physical characteristics for improved drug delivery to the periodontal pocket and are now the subject of long-term clinical investigations. (C) 1997 Elsevier Science B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adherence of bacteria to biomaterials is the first stage in the development of a device-related infection. The adherence of bacterial cells to biomaterials may be influenced by surface characteristics of the cell, its growth conditions and the biomaterial surface chemistry. Following growth in human urine, the cell surface,hydrophobicity and zeta potential of two ureteral stent biofilm isolates, Enterococcus faecalis and Escherichia coli, were significantly altered. In addition, the adherence of human urine-grown Enterococcus faecalis and Escherichia coli to polyurethane was significantly increased by up to 52.1% and 58.6%, respectively. Treatment of the polyurethane with human urine rendered the polymer surface more hydrophilic (mean advancing water contact angle reduced from 97.59 degrees to 26.37 degrees). However, organisms grown in human urine showed less adherence (up to 90.4%) to the treated polymer than those grown in Mueller-Hinton broth. The results presented in this study indicate that in vivo conditions should be simulated as far as possible when carrying out in vitro bacterial adherence assays, especially if assessing novel methods for reduction of adherence. (C) 1997 Elsevier Science B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In practice, polyvinyl chloride endotracheal tubes and polyurethane urinary catheters are located in areas where they are exposed to the conditioning fluids saliva and urine, respectively. Samples of both biomaterials were incubated in these conditioning fluids and, following treatment, dynamic contact angle measurement and surface roughness assessment by atomic force microscopy were used to analyse surface characteristics. Over a 24 h period of contact with the conditioning fluids, the surface of both materials became significantly more hydrophilic (p

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ultrastructural changes to the tegument of 5-week-old, 3-week-old and freshly-excysted Fasciola hepatica following in vitro incubation with the deacetylated (amine) metabolite of diamphenethide (DAMD, 10 mu gml(-1)) were examined by transmission electron microscopy, A similar sequence of tegumental changes occurred in all three age groups of fluke, although, with increasing fluke age, the time before onset increased and the damage became more extensive. The 5-week-old flukes showed an initial stress response after 3 h, typified by blebbing of the apical plasma membrane, formation of microvilli and an accumulation and accelerated release of secretory bodies at the tegumental apex, as well as swelling of the basal infolds, The swelling increased in extent with progressively longer periods of incubation in DAMD, leading to extreme edema and sloughing of the tegument after 9 h. The 3-week-old flukes showed a stress response and swelling of the basal infolds after only 1.5 h, although sloughing of the tegument did not occur until after 9 h. In the freshly-excysted metacercaria, a stress response and some sloughing of the tegument were evident after only 0.5 h. At all stages of development, the ventral tegument was more severely affected than the dorsal, Changes also occurred to the tegumental cells which were indicative of a disruption in the synthesis and release of tegumental secretory bodies: the amount of GER became reduced, the cisternae became swollen and their ribosomal covering decreased, the Golgi complexes disappeared from the cells and the numbers of secretory bodies in the cells also decreased, The heterochromatin content of the nuclei increased and eventually the tegumental cells began to break down, Again, the changes became apparent more rapidly at the earlier stages of development. The ultrastructural changes to the tegument are linked to a possible mode of action for diamphenethide as an inhibitor of protein synthesis. In turn, the results may help to explain the drug's high efficacy against juvenile stages of F. hepatica.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of the novel benzimidazole, triclabendazole (Fasinex, Ciba-Geigy), in its active sulphoxide metabolite form (TCBZ-SX), on the tegumental surface of Fasciola hepatica has been examined in vitro. The tegument of adult flukes incubated in TCBZ-SX (50 mug/ml) appeared swollen and blebbed after only 6 h. In addition, progressive spine loss at the oral cone was evident following 12 h treatment. After 24 h, the tegumental syncytium and spines had completely sloughed away, leaving an exposed basal lamina and empty spine sockets. Juvenile flukes (3 weeks old) also demonstrated tegumental alterations after treatment with TCBZ-SX (20 mug/ml). The syncytium became extremely roughened and corrugated on both dorsal and ventral surfaces after only 3 h. Following 6- and 9-h incubations, there were many deep furrows, which were especially pronounced on the ventral surface, and by 18 h, the juvenile tegument was severely disrupted, especially on the ventral surface. In all cases, the effects were more marked than in the previous incubation periods. The results confirm the potent activity of triclabendazole against F. hepatica and suggest that the tegument of adult and juvenile flukes may be a target organ for this important fasciolicide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ascaris suum possesses a large number of FMRFamide-related peptides (FaRPs) of which KNEFIRFamide (AF1), KHEYLRFamide (AF2) and KSAYMRFamide (AF8/PF3) have been shown to modulate the intrinsic, rhythmic activity of the vagina vera of A. suum in vitro. In the present study, the effects of the nematode FaRPs, SDPNFLRFamide (PF1), SADPNFLREamide (PF2) and KPNFIRFamide (PF4) (from Panagrellus redivivus) and AVPGVLRFamide (AF3) and GDVPGVLRFamide (AF4) (from A. suum) on the in vitro activity of the vagina vera were examined. The effects of each of the peptides were qualitatively and quantitatively distinct. All 3 FaRPs from P. redivivus were inhibitory, causing a cessation of contractions. PF2 was 3 times more potent than PF1, with a threshold of 1 nM. Although PF4 was the least potent (threshold, 10 nM), its effects at greater than or equal to 10 nM were quantitatively the greatest. Both AF3 and AF4 (1 mu M) induced complex, multiphasic responses consisting of an initial contraction and spastic paralysis followed by a return of contractile activity of increased amplitude. AF3 was 3 times more potent than AF4. The effects of these peptides had some similarities to those observed on A. suum somatic body wall muscle in vitro, with PF1, PF2 and PF4 being inhibitory and AF3 and AF4 being excitatory.